

# Roadmap for extreme-scale simulations

## F.Xavier Trias<sup>1</sup>, Àdel Alsalti-Baldellou<sup>1,2</sup>, Assensi Oliva<sup>1</sup>

<sup>1</sup>Heat and Mass Transfer Technological Center, Technical University of Catalonia <sup>2</sup>Department of Information Engineering, University of Padova, Italy





# Roadmap for extreme-scale simulations: on the evolution of Poisson solvers

## F.Xavier Trias<sup>1</sup>, Àdel Alsalti-Baldellou<sup>1,2</sup>, Assensi Oliva<sup>1</sup>

<sup>1</sup>Heat and Mass Transfer Technological Center, Technical University of Catalonia <sup>2</sup>Department of Information Engineering, University of Padova, Italy





| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence | Results<br>00 | Conclusions<br>00 |
|------------------|-----------------------|--------------------------------|--------------------|---------------|-------------------|
|                  |                       |                                |                    |               |                   |

# Contents



- 2 Two competing effects
- 3 Residual of Poisson's equation
- 4 Solver convergence

## 5 Results



10 EFlop/s Exascale 1 EFlop/s 100 PFlop/s 10 PFlop/s And in case of the Petascale 1 PFlop/s Performance a start and the 100 TFlop/s 10 TFlop/s Terascale 1 TFlop/s 100 GFlop/s 10 GFlop/s ¢\* ---- Sum **---** #1 - #500 1 GFlop/s 100 MFlop/s 1990 1995 2000 2005 2010 2015 2020 2025

#### **Projected Performance Development**

Source: www.top500.org













|       |                 |        | ~10 y              | ears ~5 y               | ears                           |                          |
|-------|-----------------|--------|--------------------|-------------------------|--------------------------------|--------------------------|
|       | PetaFLOPS       |        | #1 in LINPACK      | #1 in HPCG              | Cutting-edge<br>CFD simulation | 'Routine' CFD simulation |
| Zetta | 106             |        | 2037               | 2047                    | 2052                           |                          |
| Exa   | 10 <sup>3</sup> | years  | 2022<br>(Frontier) | 2032                    | 2037                           |                          |
| Peta  | 1               | ars 14 | 2008 (Roadrunner)  | <b>2018</b><br>(Summit) | 2023                           |                          |
| Tera  | 10-3            | 11 ye  | 1997<br>(ASCI Red) | No data                 |                                |                          |





| Motivation<br>●0 | Two competing effects | Residual of Poisson's equation | Solver convergence | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------|---------------|-------------|
|                  |                       |                                |                    |               |             |

|       |                 |        | ~10 y              | vears ~5 y              | ears ~10       | years         |
|-------|-----------------|--------|--------------------|-------------------------|----------------|---------------|
|       |                 |        |                    |                         | Cutting-edge   | 'Routine' CED |
|       | PetaFLOPS       |        | #1 in LINPACK      | #1 in HPCG              | CFD simulation | simulation    |
| Zetta | 106             |        | 2037               | 2047                    | 2052           | 2062          |
| Exa   | 10 <sup>3</sup> | years  | 2022<br>(Frontier) | 2032                    | 2037           | 2047          |
| Peta  | 1               | ars 14 | 2008 (Roadrunner)  | <b>2018</b><br>(Summit) | 2023           | 2033          |
| Tera  | 10-3            | 11 ye  | 1997<br>(ASCI Red) | No data                 |                |               |







#### Research question :

• Will the **complexity** of numerically solving **Poisson's equation** increase or decrease for **very large scale DNS/LES** simulations of incompressible turbulent flows?



DNS<sup>1</sup> of air-filled Rayleigh–Bénard convection at  $Ra = 10^8$  and  $10^{10}$ 

<sup>1</sup>B.Sanderse, F.X.Trias. *Energy-consistent discretization of viscous dissipation with application to natural convection flow*. (https://arxiv.org/abs/2307.10874)











Step 1: 
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2: 
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\int_{At} \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$
Semi-discrete (just in time)  
NS equations
$$\int_{NS} \frac{\vec{u}^{n+1} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$

$$\nabla \cdot \vec{u}^{n+1} = 0$$



Step 1: 
$$\frac{\vec{u}^{p} - \vec{u}^{n}}{\Delta t} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1})$$
Step 2: 
$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Step 3: 
$$\vec{u}^{n+1} = \vec{u}^{p} - \Delta t \nabla p^{n+1}$$

$$\int_{u}^{\Delta t} \vec{u}^{n+1} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$
Semi-discrete (just in time)  
NS equations
$$\int_{u}^{u} \vec{u}^{n+1} = \vec{u}^{n+1} - \vec{u}^{n} = \frac{3}{2} \vec{R} (\vec{u}^{n}) - \frac{1}{2} \vec{R} (\vec{u}^{n-1}) - \nabla p^{n+1}$$

$$\nabla \cdot \vec{u}^{n+1} = 0$$

#### Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

$$\left(\nabla^2 p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^p\right)$$

Two competing effects: who (if any) will eventually win?

Re 
$$\uparrow$$
  $\Delta x \checkmark \longrightarrow N_x \uparrow \longrightarrow$  Larger system  $\checkmark$   
 $\Delta t \checkmark \longrightarrow$  Better initial guess  $\uparrow$ 



#### Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?

 $Ra = 10^{8}$ 



<sup>&</sup>lt;sup>2</sup>F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.



#### Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



<sup>&</sup>lt;sup>2</sup>F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.



#### Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



<sup>&</sup>lt;sup>2</sup>F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.

#### Research question:

 Will the complexity of numerically solving Poisson's equation increase or decrease for very large scale DNS/LES simulations of incompressible turbulent flows?



<sup>2</sup>F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. *Flow topology dynamics in a 3D phase space for turbulent Rayleigh-Bénard convection*, **Phys.Rev.Fluids**, 5:024603, 2020.



## Smaller and smaller, but how much?









# Smaller and smaller, but how much?

Two competing effects: who (if any) will eventually win?

Re 
$$\uparrow$$
  $\Delta x \downarrow \longrightarrow N_x \uparrow \longrightarrow$  Larger system  $\downarrow$   
 $\Delta t \downarrow \longrightarrow$  Better initial guess  $\uparrow$ 

In summary:

$$\frac{1}{N_x^{K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

$$\alpha = -1/2 \quad (\text{ K41 or diffusion dominated })$$

$$\frac{\Delta t}{t_l} \sim \text{Re}^{\alpha} \qquad \alpha = -3/4 \quad (\text{ convection dominated })$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation<br>●00 | Solver convergence | Results<br>00 | Conclusions |
|------------------|-----------------------|---------------------------------------|--------------------|---------------|-------------|
|                  |                       |                                       |                    |               |             |

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$

$$\downarrow \text{Initial guess} \Rightarrow p^{n}$$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1}$$

| Motivation         Two competing effects         Residual of Poisson's equation         Solver convergence         Results         Convergence           00         000         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         < | nclusions |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\rightarrow p^{n}$ 

$$\downarrow$$

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation<br>●00 | Solver convergence | Results<br>00 | Conclusions |
|------------------|-----------------------|---------------------------------------|--------------------|---------------|-------------|
|                  |                       |                                       |                    |               |             |

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$r^{o} = \nabla^{2} p^{n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} = \frac{1}{\Delta t} \nabla \cdot u^{p,n} - \frac{1}{\Delta t} \nabla \cdot u^{p,n+1} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = \nabla \cdot \frac{\partial u^{p}}{\partial t}$$

$$\tilde{r}^{o} = \nabla^{2} \tilde{p}^{n} - \nabla \cdot u^{p,n+1} \approx \nabla \cdot u^{p,n} - \nabla \cdot u^{p,n+1} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = \Delta t \nabla \cdot \frac{\partial u^{p}}{\partial t}$$
Initial guess  $\Rightarrow \tilde{p}^{n} = \Delta t p^{n}$ 

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation<br>○●○ | Solver convergence | Results<br>00 | Conclusions |
|------------------|-----------------------|---------------------------------------|--------------------|---------------|-------------|
|                  |                       |                                       |                    |               |             |

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
Initial guess  $\Rightarrow \tilde{p}^{n} = \Delta t p^{n}$ 

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$



$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$Q_{G} - criterion$$

$$P^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
What is  $\nabla \cdot u^{p}$ ?
$$\nabla \cdot u^{p} = \sum (n - \Delta t \nabla \cdot (u^{n} \cdot \nabla u^{n}) + v \Delta \nabla \cdot \vec{u}^{n} = 2\Delta t Q_{G}$$

$$P^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t}$$
Initial guess  $\Rightarrow p^{n} = \Delta t p^{n}$ 

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation<br>○●○ | Solver convergence | Results<br>00 | Conclusions |
|------------------|-----------------------|---------------------------------------|--------------------|---------------|-------------|
|                  |                       |                                       |                    |               |             |

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t}$$

$$R_{G} = det(G) = \frac{1}{3} tr(G^{3})$$

$$\overline{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t}$$

$$Q_{G} = -\frac{1}{2} tr(G^{2}) \text{ where } G = \nabla u^{n}$$

Exact equations for restricted Euler:

$$\frac{d\mathbf{Q}_G}{dt} = -3\mathbf{R}_G \longrightarrow \frac{\partial \mathbf{Q}_G}{\partial t} = -(\mathbf{u} \cdot \nabla)\mathbf{Q}_G - 3\mathbf{R}_G$$



$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

Exact equations for restricted Euler:

$$\frac{dQ_G}{dt} = -3R_G \longrightarrow \frac{\partial Q_G}{\partial t} = -(u \cdot \nabla)Q_G - 3R_G$$

THE OWNER

|  | vergence Results Conclusions |
|--|------------------------------|
|--|------------------------------|

$$\nabla^{2} p^{n+1} = \frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}$$
Initial guess  $\Rightarrow p^{n}$ 

$$Q_{G} - criterion$$

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$

$$\tilde{r}^{o} \approx \Delta t \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{2} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{2} \{(u \cdot \nabla) Q_{G} + 3 R_{G}\}$$
Initial guess  $\Rightarrow \tilde{p}^{n} = \Delta t p^{n}$ 

$$\nabla^{2} \tilde{p}^{n+1} = \nabla \cdot \vec{u}^{p}$$

| Motivation<br>00 | Two competing effects                                                                 | Residual of Poisson's equation<br>00●                                 | Solver convergence                                                   | Results<br>00                                                       | Conclusions<br>00                                                                             |
|------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Residu           | al of Poisson                                                                         | 's equation in Fo                                                     | ourier space                                                         |                                                                     |                                                                                               |
| In<br>r          | summary:<br>${}^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta$ | $t^{p}\frac{\partial Q_{G}}{\partial t}\approx -2\Delta t^{p}\{(u)\}$ | $(\cdot \nabla) \mathbf{Q}_{\mathbf{G}} + 3 \mathbf{R}_{\mathbf{G}}$ | $\left\{ \nabla^{2} p^{n+1} = \frac{1}{2} \right\} p = \frac{1}{2}$ | $\frac{\frac{1}{\Delta t} \nabla \cdot \vec{u}^{p}}{= \{1, 2\}}$ $= \nabla \cdot \vec{u}^{p}$ |

$$\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \begin{cases} \alpha = -1/2 \text{ (K41 or diffusion dominated )} \\ \alpha = -3/4 \text{ (convection dominated )} \end{cases}$$

$$\frac{1}{N_x^{K41}} = \frac{\Delta x}{L_x} \sim \frac{\eta}{l} \propto \text{Re}^{-3/4}$$

# Residual of Poisson's equation in Fourier space

In summary:  

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2 \Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2 \Delta t^{p} \{ (u \cdot \nabla) Q_{G} + 3 R_{G} \}$$

$$p = \{1, 2\}$$

$$p = \{1, 2\}$$

$$\nabla^{2} \tilde{p}^{au} = \nabla \cdot \tilde{u}^{p}$$
Hypothesis:  
(inertial range)  

$$\left( \frac{\partial \hat{Q}_{G}}{\partial t} \right)_{k} \propto k^{\beta} \longrightarrow \hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

$$\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (\text{ K41 or diffusion dominated }) \\ \alpha = -3/4 & (\text{ convection dominated }) \end{array} \right\}$$

$$\frac{1}{N_{x}^{K41}} = \frac{\Delta x}{L_{x}} \sim \frac{\eta}{l} \propto \operatorname{Re}^{-3/4}$$

# Residual of Poisson's equation in Fourier space

In summary:  

$$r^{o} \approx \frac{\partial \nabla \cdot u^{p}}{\partial t} = 2\Delta t^{p} \frac{\partial Q_{G}}{\partial t} \approx -2\Delta t^{p} \{(u \cdot \nabla) Q_{G} + 3R_{G}\} \qquad p = \{1, 2\}$$

$$p = \{1, 2\}$$

$$p = \{1, 2\}$$

$$\nabla^{2} \tilde{p}^{evt} = \nabla \cdot \tilde{u}^{p}$$
Hypothesis:  
(inertial range)  

$$\left(\frac{\partial \hat{Q}_{G}}{\partial t}\right)_{k} \propto k^{\beta} \longrightarrow \hat{r}_{k}^{o} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\tilde{\alpha}} k^{\beta}$$

$$\frac{\Delta t}{t_{l}} \sim \operatorname{Re}^{\alpha} \left\{ \begin{array}{c} \alpha = -1/2 & (\text{ K41 or diffusion dominated }) \\ \alpha = -3/4 & (\text{ convection dominated }) \end{array} \right\}$$
Parseval's theorem  

$$\left\| r \right\|^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{r}_{k}^{2} dk$$

## Residual of Poisson's equation in Fourier space



| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>●0 | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |

$$\|\boldsymbol{r}^{n}\|^{2} = \int_{1}^{k_{max}} (\hat{\omega}_{k}^{n} \hat{\boldsymbol{r}}_{k}^{0})^{2} dk \approx \int_{1}^{\operatorname{Re}^{34}} \hat{\omega}_{k}^{2n} \operatorname{Re}^{2\widetilde{\alpha}} k^{2\beta} dk$$
$$\hat{\omega} = \frac{\hat{\boldsymbol{r}}_{k}^{n+1}}{\hat{\boldsymbol{r}}_{k}^{n}} \int_{1}^{\infty} (\hat{\boldsymbol{r}}_{k}^{0} \propto \Delta t^{p} k^{\beta} \sim \operatorname{Re}^{p\alpha} k^{\beta} = \operatorname{Re}^{\widetilde{\alpha}} k^{\beta})^{2} dk$$

$$||\mathbf{r}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\text{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>●0 | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |

$$||\mathbf{r}||^{2} = \int_{\Omega} r^{2} dV = \int_{1}^{k_{max}} \hat{\mathbf{r}}_{k}^{2} dk \approx \int_{1}^{\operatorname{Re}^{3/4}} \hat{\mathbf{r}}_{k}^{2} dk$$

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>●0 | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>●0 | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>○● | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |



| Motivation Two competing effects Residual of Poisson's equation | Solver convergence<br>○● | Results<br>00 | Conclusions |
|-----------------------------------------------------------------|--------------------------|---------------|-------------|
|-----------------------------------------------------------------|--------------------------|---------------|-------------|



| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>○● | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |



| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence<br>○● | Results<br>00 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------------|---------------|-------------|
|                  |                       |                                |                          |               |             |





10

Re<sub>2</sub> ≈ 433 (1024<sup>3</sup>) from https://turbulence.pha.jhu.edu/

100

10<sup>-6</sup>

13 / 16

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence | Results<br>●0 | Conclusions |
|------------------|-----------------------|--------------------------------|--------------------|---------------|-------------|
|                  |                       |                                |                    |               |             |

Kolmogorov theory predictions



Kolmogorov theory predictions















| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence | Results<br>00 | Conclusions<br>●0 |
|------------------|-----------------------|--------------------------------|--------------------|---------------|-------------------|
| Conclu           | ding remarks          |                                |                    |               |                   |

• **Two competing effects** on the convergence of Poisson's equation have been identified.

| Motivation<br>00 | Two competing effects | Residual of Poisson's equation | Solver convergence | Results<br>00 | Conclusions<br>●○ |
|------------------|-----------------------|--------------------------------|--------------------|---------------|-------------------|
|                  |                       |                                |                    |               |                   |

# Concluding remarks

- **Two competing effects** on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.



# Concluding remarks

- Two competing effects on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- Numerical results match well with the developed theory prediction  $\beta \approx 11/6$





# Concluding remarks

- Two competing effects on the convergence of Poisson's equation have been identified.
- The {α, β} phase space is divided in two regions depending on the solver convergence.
- Numerical results match well with the developed theory prediction  $\beta \approx 11/6$



- Extend the analysis up to  $Re_\lambda \approx 1200$  using  $8192^3$  nodes
- Analysis of more complex flows







# Thank you for your attendance

