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Motivation

Research question :
Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

DNS1 of air-filled Rayleigh–Bénard convection at Ra “ 108 and 1010

1B.Sanderse, F.X.Trias. Energy-consistent discretization of viscous dissipation with
application to natural convection flow. (https://arxiv.org/abs/2307.10874)
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Poisson’s equation: a quick reminder

  

u⃗
n+1−u⃗

n

Δ t
=

3

2
R⃗ (u⃗n)−

1

2
R⃗ (u⃗n−1)−∇ p

n+1

∇⋅u⃗n+1=0

Semi-discrete 

(just in time)

NS equations

Orthogonal functions

∇ p
u⃗ (∇⋅⃗u=0)

Solutions of NS lie

on this space
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Poisson’s equation: getting more tough or not?
Research question:

Will the complexity of numerically solving Poisson’s equation
increase or decrease for very large scale DNS/LES simulations of
incompressible turbulent flows?

  

∇
2
p
n+1
=

1

Δ t
∇⋅u⃗

p

Re↑
Δ x↓ N x↑

Δ t↓

Larger system

Better initial guess ↑

↓

Two competing effects: who (if any) will eventually win?

Ra “ 108 Ra “ 1010 Ra “ 1011

208 ˆ 208 ˆ 400 768 ˆ 768 ˆ 1024 1662 ˆ 1662 ˆ 2048
17.5M 607M 5600M

2F.Dabbagh, F.X.Trias, A.Gorobets, A.Oliva. Flow topology dynamics in a 3D phase
space for turbulent Rayleigh-Bénard convection, Phys.Rev.Fluids, 5:024603, 2020.
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Smaller and smaller, but how much?
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K41 theory:
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Two competing effects: who (if any) will eventually win?
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η : smallest eddies ( Kolmogorov length scale )

Question:

how 
η

l
decreases with Re?

E
ff

e
ct

 o
f 

in
cr

e
si

ng
 

R
e
yn

ol
d
s 

nu
m

b
e
r

η

η

7 / 16



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Smaller and smaller, but how much?

  

From classical 
K41 theory:

u

U
∝Re

−1/4

1

N x

K41
=
Δ x

L
x

∼
η
l
∝Re

−3/4

1

N t

K41
=
Δ t
t sim

∼
tη

t
l

∝
η
l

U

u
∝Re

−3 /4
Re

1/4=Re
−1/2

Re↑
Δ x↓ N

x
↑

Δ t↓

Larger system

Better initial guess ↑

↓

Two competing effects: who (if any) will eventually win?

From CFL condition:

Δ t conv∼
Δ x

U
Δ t diff∼

Δ x
2

ν

1

N
t

conv
∼
Δ t conv

t l
∼
U

l

lRe
−3/4

U
=Re

−3/4

1

N
t

diff
∼
Δ t diff

tl
∼
U

l

l
2(Re

−3 /4)2

ν =Re
−1 /2

7 / 16



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Smaller and smaller, but how much?

  

Re↑
Δ x↓ N

x
↑

Δ t↓

Larger system

Better initial guess ↑

↓

Two competing effects: who (if any) will eventually win?

In summary:

Δ t

t
l

∼Re
α

α=−1/2   ( K41 or diffusion dominated )

α=−3 /4   ( convection dominated )

1

N x

K41
=
Δ x

L
x

∼
η

l
∝Re

−3/4

7 / 16



Motivation Two competing effects Residual of Poisson’s equation Solver convergence Results Conclusions

Residual of Poisson’s equation
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Residual of Poisson’s equation
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n=2Δ t QG

Initial guess →  ~pn=Δ t pn
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Residual of Poisson’s equation in Fourier space
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Residual of Poisson’s equation in Fourier space
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Solver convergence
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Homogeneous isotropic turbulence
Kolmogorov theory predictions
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Homogeneous isotropic turbulence
New derivations
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Concluding remarks

Two competing effects on the convergence of
Poisson’s equation have been identified.

The tα̃, βu phase space is divided in two regions
depending on the solver convergence.

Numerical results match well with the developed
theory prediction β « 11{6
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On-going research:
Extend the analysis up to Reλ « 1200 using 81923 nodes
Analysis of more complex flows
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