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Research question #1:

@ Can we construct numerical discretizations of the Navier-Stokes

equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?

1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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DNS? of backward-facing step at Re; = 395 and expansion ratio 2

2A.Pont-Vilchez, F.X.Trias, A.Gorobets, A.Oliva. DNS of Backward-Facing Step flow
at Rer = 395 and expansion ratio 2. Journal of Fluid Mechanics, 863:341-363, 2019.
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Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale
simulations on modern supercomputers?

1995 2000 2005 2010 2015 2020

CopLin oy

Technology Trends in HPC Cey

single-core CPU clusters ... multicore CPUclusters ...  hybrid clusters >

\ V\?"k \\3‘0{&

3X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.

A.Alsalti-Baldellou, X.Alvarez-Farré, A.Gorobets, A.Oliva, F.X.Trias. Strategies to increase the arithmetic intensity of the
linear solvers. ParCFD’22 Don't miss it!

5X.A|varez—Farré, A.AlsaltifBaldellou, A.Gorobets, A.Oliva, F.X.Trias. On the benefits and applications of sparse
matrix-matrix product on various parallel architectures. ParCFD’22 Don’t miss it! 4/22
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@ How can we develop portable and efficient CFD codes for large-scale

simulations on modern supercomputers?
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single-core CPU clusters = multi-core CPU clusters = hybrid clusters >
T
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CTTC resources and software _——_scalability up to 100k cores
DPC STG ] - HPC?

sequential structured parallel structured | termofluids heterogeneous algebr>

deep source of applied and
fundamental research

HPC?: portable, algebra-based framework for heterogeneous computing is being
developed3. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are presented in this conference®>.

3X.Alvarez, A.Gorobets, F.X.Trias. A hierarchical parallel implementation for heterogeneous computing. Application to
algebra-based CFD simulations on hybrid supercomputers. Computers & Fluids, 214:104768, 2021.
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matrix-matrix product on various parallel architectures. ParCFD’22 Don’t miss it!
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Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNSIE®

FLUENT

q
b - ‘3 €% CODE &
cosesatume oM oo  [HEl

* OpenFOAM  openVFOAM®
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Frequently used general purpose CFD codes:

+ STARCCM+  (Liesaarce SIEMENS
« ANSYS-FLUENT TAWNSIE®

FLUENT

q
hd - ‘3 €% CODE &
cosesatume oM oo  [HEl

* OpenFOAM  OpenVFOAM® G’i’“

Main common characteristics of LES in such codes:

@ Unstructured finite volume method, collocated grid
@ Second-order spatial and temporal discretisation
o Eddy-viscosity type LES models

5
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OpenVFOAM® | ESCresults of a turbulent channel for at Re, = 180
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6E.M.J.Komen, L.H.Camilo, A.Shams, B.J.Geurts, B.Koren. A quantification method
for numerical dissipation in quasi-DNS and under-resolved DNS, and effects of numerical
dissipation in quasi-DNS and under-resolved DNS of turbulent channel flows, Journal of

Computational Physics, 345, 565-595, 2017.
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@ Are LES results are merit of the SGS model?
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Motivation

Research question #1:
@ Can we construct numerical discretizations of the Navier-Stokes
equations suitable for complex geometries, such that the symmetry
properties are exactly preserved?
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1F X.Trias, A.Gorobets, A.Oliva. Turbulent flow around a square cylinder at Reynolds
number 22000: a DNS study, Computers&Fluids, 123:87-98, 2015.
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Symmetry-preserving discretization
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Why collocated arrangements are so popular?
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@ p-us coupling is naturally solved v

e C(us) and D difficult to discretize X AA




Preserving symmetries at discrete level

[e]e] lele]e}

Why collocated arrangements are so popular?

STAR-CCM+  (Ltacerce SIEMENS
ANSYS-FLUENT JAWNES)

FLUENT - )
. - " @ ODE L)
Code-Saturne @wum =~ EDF m
* OpenFOAM  OpenVFOAM® GE.'U

Qc% + C(us)uc =Duc—G.p.; Mceuc =0, Ak
dt
In collocated meshes VAVA
@ p-u. coupling is cumbersome X [/
@ C(us) and D easy to discretize v/ AVA‘

@ Cheaper, less memory,... v

10/22



Preserving symmetries at discrete level

[e]e] lele]e}

Why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary?®:

e Mass: MI_,cue = MM ete — Ll MM cue ~ 0. X
e Energy: p. (L—Lc) p_#0x

8F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.
Symmetry-preserving discretization of Navier-Stokes equations on collocated

unstructured grids, Journal of Computational Physics, 258 (1): 246-267, 2014.
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symmetry-preserving second-order time-accurate PISO-based method”. Computers &
Fluids, 225:104979, 2021.
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Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken can almost be broken...
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Pressure-velocity coupling on collocated grids
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Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated
formulation has been successfully used for DNS/LES simulations!?:
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19R Borrell, O.Lehmkuhl, F.X.Trias, A.Oliva. Parallel Direct Poisson solver for
discretizations with one Fourier diagonalizable direction. Journal of Computational

Physics, 230:4723-4741, 2011.
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Examples of simulations
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10F X.Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Portability and beyond
000

Algebra-based approach naturally leads to portability

Research question #2:
@ How can we develop portable and efficient CFD codes for large-scale simulations
on modern supercomputers?

1995 2000 2005 2010 2015 2020
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single-core CPU clusters multi-core CPU clusters hybrid clusters >
A
> \A\“““
CTTC resources and software _ scalabilty up to 100k
DPC STG Tl ; HPC?
sequential structured parallel structured 3 termofluids algebxal>

deep source of applied and
fundamental research

HPC2: portable, algebra-based framework for heterogeneous computing is being
developed. Traditional stencil-based data and sweeps are replaced by algebraic
structures (sparse matrices and vectors) and kernels. SpMM-based strategies to increase
the arithmetic intensity are/were presented in this conference!!+12,

11,

A.Alsalti-Baldellou, X.Alvarez-Farré, A.Gorobets, A.Oliva, F.X.Trias. Strategies to increase the arithmetic intensity of the
linear solvers. ParCFD’22 Don't miss it!
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matrix-matrix product on various parallel architectures. ParCFD’22 Don’t miss it! 14 /22



Portability and beyond
o] o]

Algebra-based approach naturally leads to portability, to

simple and analyzable formulations

Continuous Discrete
0 d
a—?+C(u,u)=uV2u—Tp Q#vLC(uh)uh:Duh—Gph
Vu=0 hﬂllh = 0/,
(a.b) - | abdg (an, by, = al by
T
(C(u, 1), 02) = —(C (U, 2), 1) C(up) = —C" (un)
(V-a,p) = —(a, V) QG =-M"

(V?a,b) = (a,Vb) D=DT def—
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Benefits for Poisson solver are 3-fold: |
L =SLS ! = 1® Ly, + diag(d)

@ Higher arithmetic intensity (Al)

@ Reduction of memory footprint

@ Reduction in the number of
iterations

— Overall speed-up up to x2-x3 v
— Memory reduction of ~2 SpMM can be used = higher Al
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Algebra-based approach naturally leads to portability, to

simple and analyzable formulations and opens the door to
new strategies'®1* to improve its perfomance...

Other SpMM-based strategies to [ =sL5 ! = |® Linn + diag(d)
increase Al and reduce memory
footprint:

@ Multiple transport equations
@ Parametric studies

@ Parallel-in-time simulations

@ Go to higher-order?
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Rethinking standard CFD operations
CFL-like condition

Step #1: forget about classical formulae from textbooks...

...and replace it by an eigenbounding problem of C (us) and D matrices

du
QST: + C(us) us = Dus — Gp.; Mus =0,
(—C(us) +D)v = v
14 Bendixson (1900)
“ SUR LES RACINES D'UNE EQUATION FONDANENTALE'
C(us)v=>\v -
Dv = \v
Ay . e l

18 /22
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way'®

|
"

2

-4

w N
w

|

N
|

IS

2 4 R

p(D) < p%r=h(D)

p(C) < p%r(C)

16F X Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way'®

7

I
X
|-#2|+[3] /
/

—4 2 4 R

Table 1. Tests for the air-filled (Pr=0.71) differentially heated cavity at Rayleigh number Ra =3 x 10'°
and height aspect ratio 4; averaged results correspond to the statistically steady state

N N, N. @/(n/2) SICFL+AB2 OfEigenCD+xIL2 OfEigenCD+x1L2/OICFLAB2
MeshA 128 338 778 0.072 1.04x107* 3.02x107¢ 2.90
MeshB 64 168 338 0058 431x 107 121x107° 280
MeshC 2 84 168 0.252 1.80x107% 4691073 2.59
MeshD 32 56 112 0408 421x107°  875x107° \ 208
MeshE 16 2 84 0.504 6.88x 1073 135%10°% \ 196 /

16F X Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of
Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
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Rethinking standard CFD operations
CFL-like condition

Step #2: compute eigenbounds of C (us) and D in an inexpensive way'®

1 7
y / >
/
1721+13 /
/
-4 2 4 R

4 6 -2
6 2 3
-2 3 -4

p(D) < p%r=h(D)

Q) < Gersh(c)
p(C) <p

Table 2. Tests for the flow around a NACA 0012 airfoil at Reynolds number 5 x 10 and an angle of
attack of 5°; averaged results correspond to the statistically steady state

Ny Mesh2D ©/(r/2)  BicrLiam  OlEignCDixIL2  OEigenCDxil2/OICFLAB
UMeshA 64 ~2.65x 10° 0593 4.69x107°  130x10°* [ 277
UMeshB 32 ~4.69x 10* 0.956 161x10*  686x10°* 427 )

16F X Trias and O.Lehmkuhl. A self-adaptive strategy for the time-integration of

Navier-Stokes equations. Numerical Heat Transfer, part B, 60(2):116-134, 2011.
19 /22
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Rethinking standard CFD operations
CFL-like condition

Step #3:
reformulate the problem in a way that we avoid constructing C (us) and D

p(D) < p&(D)

p(C) < p%erh(C)

where T is the face-to-cell oriented incidence matrix; As = As/\sAs_1
(diffusivity-like fluxes) and Fs = AsUs (mass fluxes) are diagonal matrices.

20 /22



Rethinking CFD
[e]ele] ]

Rethinking standard CFD operations
CFL-like condition

Step #3 ... #4 (some maths that would take too long to explain):
reformulate the problem in a way that we avoid constructing C (us) and D

Constant
matrix

p(D) < o < p (T TIAL) = max(| T T diag(Asz)

(.

-~
SpMv

Constant
matrix

Gersh = _ T - ~
p(C) < e <p (Tes Tos|Fsl) = maX(LTcs T.s| diag(Fs))

~
SpMV

where T is the face-to-cell oriented incidence matrix; As = As/\sAs_1
(diffusivity-like fluxes) and Fs = AsUs (mass fluxes) are diagonal matrices.
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collocated formulations is the key point for reliable
LES/DNS simulations.
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Concluding remarks

o Preserving symmetries either using staggered or
collocated formulations is the key point for reliable
LES/DNS simulations.

@ Algebra-based approach naturally leads to
portability, to simple and analyzable formulations
and opens the door to new strategies to improve
its perfomance.

On-going research:

e Rethinking standard CFD operations (e.g. flux limiters!”, boundary
conditions, CFL,...) to adapt them into an algebraic framework
(Motivation: maintaining a minimal number of basic kernels is crucial
for portability!!!)

17N.Va|le, X.Alvarez, A.Gorobets, J.Castro, A.Oliva, F.X.Trias. On the implementation of flux limiters in algebraic
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