Paving the way for DNS and LES on unstructured grids

F.Xavier Trias1, Andrey Gorobets2, Assensi Oliva1

1Heat and Mass Transfer Technological Center, Technical University of Catalonia
2Keldysh Institute of Applied Mathematics of RAS, Russia
Paving the (right?) way for DNS and LES on unstructured grids

F.Xavier Trias1, Andrey Gorobets2, Assensi Oliva1

1Heat and Mass Transfer Technological Center, Technical University of Catalonia

2Keldysh Institute of Applied Mathematics of RAS, Russia
Paving the (right?) way for DNS and LES on unstructured grids: fully conservative collocated/staggered discretizations

F.Xavier Trias\(^1\), Andrey Gorobets\(^2\), Assensi Oliva\(^1\)

\(^1\)Heat and Mass Transfer Technological Center, Technical University of Catalonia
\(^2\)Keldysh Institute of Applied Mathematics of RAS, Russia
Research question #1:

- Can we construct numerical discretizations of the Navier-Stokes equations suitable for complex geometries, such that the symmetry properties are exactly preserved?

DNS\(^1\) of the turbulent flow around a square cylinder at \(Re = 22000\)

Motivation

Research question #1:

- Can we construct numerical discretizations of the Navier-Stokes equations suitable for complex geometries, such that the symmetry properties are exactly preserved?

DNS2 of backward-facing step at $Re_τ = 395$ and expansion ratio 2

Motivation

Research question #2:

- How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

5. X. Álvarez, A. Gorobets, F. X. Trias, A. Oliva. NUMA-aware strategies for the efficient execution of CFD simulations on CPU supercomputers *ParCFD2021*. Don’t miss it!
Motivation

Research question #2:

- How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC2: portable, algebra-based framework3 for heterogeneous computing is being developed4. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. NUMA-aware execution strategies for CFD are presented in this conference5.

5X.Álvarez, A.Gorobets, F.X.Trias, A.Oliva. NUMA-aware strategies for the efficient execution of CFD simulations on CPU supercomputers ParCFD2021. Don’t miss it!
Motivation

Frequently used general purpose CFD codes:

- **STAR-CCM+**
- **ANSYS-FLUENT**
- **Code-Saturne**
- **OpenFOAM**
Motivation

Frequently used general purpose CFD codes:

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

Main common characteristics of LES in such codes:

- **Unstructured finite volume** method, **collocated** grid
- Second-order spatial and temporal discretisation
- Eddy-viscosity type LES models
Motivation

OpenFOAM® LES results of a turbulent channel for at $Re_T = 180$

![Graphs showing flow behavior](image)

$13 \times 76 \times 20$
\[\Delta x^+ = 90, \Delta y_{wall}^+ = 0.5, \Delta z^+ = 30 \]

$19 \times 78 \times 28$
\[\Delta x^+ = 60, \Delta y_{wall}^+ = 0.5, \Delta z^+ = 20 \]

$38 \times 78 \times 57$
\[\Delta x^+ = 30, \Delta y_{wall}^+ = 0.5, \Delta z^+ = 10 \]

OpenFOAM® LES results of a turbulent channel flow for at $Re_T = 180$

Are LES results are merit of the SGS model? Apparently **NOT!!**

Motivation

OpenFOAM® LES results of a turbulent channel for at $Re_\tau = 180$

\[\nu_{num} \neq 0 \]

Does all this really matter?

Effect of (artificial) numerical dissipation in real-world applications

LES results of a turbulent channel flow. Provided by Artificial numerical dissipation, \(\nu_{\text{num}} \), is bigger than the dissipation of the subgrid scale (SGS) model, \(\nu_{\text{SGS}} \):

\[
\nu_{\text{SGS}} < \nu_{\text{num}} \neq 0
\]

Symmetry-preserving discretization

Continuous

\[\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \]

\[\nabla \cdot u = 0 \]
Symmetry-preserving discretization

Continuous
\[
\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \\
\nabla \cdot u = 0
\]

Discrete
\[
\Omega \frac{du_h}{dt} + C(u_h) u_h = Du_h - Gp_h \\
M u_h = 0_h
\]
Symmetry-preserving discretization

Continuous

\[
\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \\
\nabla \cdot u = 0
\]

\[
\langle a, b \rangle = \int_{\Omega} ab d\Omega
\]

Discrete

\[
\Omega \frac{d u_h}{d t} + C(u_h) u_h = D u_h - G p_h \\
M u_h = 0_h
\]

\[
\langle a_h, b_h \rangle_h = a_h^T \Omega b_h
\]
Symmetry-preserving discretization

Continuous

\[
\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \\
\nabla \cdot u = 0
\]

\[\langle a, b \rangle = \int_\Omega ab \, d\Omega\]

\[\langle C(u, \varphi_1), \varphi_2 \rangle = -\langle C(u, \varphi_2), \varphi_1 \rangle\]

Discrete

\[
\Omega \frac{d u_h}{d t} + C(u_h) u_h = D u_h - G p_h \\
M u_h = 0_h
\]

\[\langle a_h, b_h \rangle_h = a_h^T \Omega b_h\]

\[C(u_h) = -C^T(u_h)\]
Symmetry-preserving discretization

Continuous

\[
\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \\
\nabla \cdot u = 0
\]

\[\langle a, b \rangle = \int_{\Omega} ab \, d\Omega\]

\[\langle C(u, \varphi_1), \varphi_2 \rangle = -\langle C(u, \varphi_2), \varphi_1 \rangle\]

\[\langle \nabla \cdot a, \varphi \rangle = -\langle a, \nabla \varphi \rangle\]

Discrete

\[
\Omega \frac{d u_h}{d t} + C(u_h) u_h = D u_h - G p_h \\
M u_h = 0_h
\]

\[\langle a_h, b_h \rangle_h = a_h^T \Omega b_h\]

\[C(u_h) = -C^T(u_h)\]

\[\Omega G = -M^T\]
Symmetry-preserving discretization

Continuous

\[
\frac{\partial u}{\partial t} + C(u, u) = \nu \nabla^2 u - \nabla p \\
\nabla \cdot u = 0
\]

\[
\langle a, b \rangle = \int_\Omega ab d\Omega
\]

\[
\langle C(u, \varphi_1), \varphi_2 \rangle = -\langle C(u, \varphi_2), \varphi_1 \rangle \\
\langle \nabla \cdot a, \varphi \rangle = -\langle a, \nabla \varphi \rangle \\
\langle \nabla^2 a, b \rangle = \langle a, \nabla^2 b \rangle
\]

Discrete

\[
\Omega \frac{d u_h}{d t} + C(u_h) u_h = D u_h - G p_h \\
M u_h = 0_h
\]

\[
\langle a_h, b_h \rangle_h = a_h^T \Omega b_h
\]

\[
C(u_h) = -C^T(u_h) \\
\Omega G = -M^T \\
D = D^T \quad \text{def}
\]
Collocated vs staggered
Collocated vs staggered
Collocated vs staggered

Collocated
Collocated vs staggered
Collocated vs staggered
Collocated vs staggered
Why staggered?

\[\Omega_s \frac{d\mathbf{u}_s}{dt} + \mathbf{C}(\mathbf{u}_s) \mathbf{u}_s = \mathbf{D}\mathbf{u}_s - \mathbf{G}\rho_c; \quad \mathbf{M}\mathbf{u}_s = \mathbf{0}_c \]
Why staggered?

\[
\Omega_s \frac{d\mathbf{u}_s}{dt} + \mathbf{C}(\mathbf{u}_s) \mathbf{u}_s = \mathbf{D}\mathbf{u}_s - \mathbf{G}\rho_c; \quad \mathbf{M}\mathbf{u}_s = 0_c
\]

Let’s consider we have \(\mathbf{u}_s \) such as

\[
\mathbf{M}\mathbf{u}_s \neq 0_c
\]
Why staggered?

Let’s consider we have \(\mathbf{u}_s \) such as

\[
M \mathbf{u}_s \neq 0_c
\]

then, we can easily project \(\mathbf{u}_s \)

\[
\mathbf{u}_s = \mathbf{u}_s - G \rho_c
\]
Why staggered?

\[
\Omega_s \frac{d\mathbf{u}_s}{dt} + C(\mathbf{u}_s) \mathbf{u}_s = \mathbf{D}\mathbf{u}_s - \mathbf{G}\mathbf{p}_c; \quad \mathbf{M}\mathbf{u}_s = \mathbf{0}_c
\]

Let’s consider we have \(\mathbf{u}_s\) such as

\[
\mathbf{M}\mathbf{u}_s \neq \mathbf{0}_c
\]

then, we can easily project \(\mathbf{u}_s\)

\[
\mathbf{M}\mathbf{u}_s = \mathbf{M}(\mathbf{u}_s - \mathbf{G}\mathbf{p}_c) = \mathbf{0}_c
\]
Why staggered?

\[
\Omega_s \frac{du_s}{dt} + C(u_s)u_s = Du_s - Gp_c; \quad Mu_s = 0_c
\]

Let’s consider we have \(u_s\) such as

\[Mu_s \neq 0_c\]

then, we can easily project \(u_s\)

\[Mu_s = M(u_s - Gp_c) = 0_c\]

Finally, this leads to a Poisson eq.

\[MGp_c = Mu_s\]
Motivation
Preserving symmetries: collocated vs staggered

Why staggered?

Let’s consider we have \(u_s \) such as

\[
M u_s \neq 0_c
\]

then, we can easily project \(u_s \)

\[
M u_s = M(u_s - Gp_c) = 0_c
\]

Finally, this leads to a Poisson eq.

\[
MGp_c = Mu_s
\]

If \(\Omega_s G = -M^T \)

\[
\langle \nabla \cdot a, \varphi \rangle = -\langle a, \nabla \varphi \rangle
\]
Why staggered? Everything seems to be in the right place!

\[
\Omega_s \frac{d\mathbf{u}_s}{dt} + \mathbf{C}(\mathbf{u}_s) \mathbf{u}_s = \mathbf{D}\mathbf{u}_s - \mathbf{G}\mathbf{p}_c; \quad \mathbf{M}\mathbf{u}_s = \mathbf{0}_c
\]

Let’s consider we have \(\mathbf{u}_s \) such as

\[
\mathbf{M}\mathbf{u}_s \neq \mathbf{0}_c
\]

then, we can easily project \(\mathbf{u}_s \)

\[
\mathbf{M}\mathbf{u}_s = \mathbf{M}(\mathbf{u}_s - \mathbf{G}\mathbf{p}_c) = \mathbf{0}_c
\]

Finally, this leads to a Poisson eq.

\[
\mathbf{M}\mathbf{G}\mathbf{p}_c = \mathbf{M}\mathbf{u}_s
\]

If \(\Omega_s \mathbf{G} = -\mathbf{M}^T \implies \langle \mathbf{u}_s, \mathbf{G}\mathbf{p}_c \rangle_h = \langle \mathbf{u}_s, \Omega_s \mathbf{G}\mathbf{p}_c \rangle_h = -(\mathbf{M}\mathbf{u}_s)^T \mathbf{p}_c = 0
\]

\[
\langle \nabla \cdot \mathbf{a}, \mathbf{\varphi} \rangle = -\langle \mathbf{a}, \nabla \mathbf{\varphi} \rangle \implies \langle \mathbf{u}, \nabla \mathbf{p} \rangle = -\langle \nabla \cdot \mathbf{u}, \mathbf{p} \rangle = 0
\]
But is this discrete Laplacian accurate?

\[\nabla^2 \varphi = f(x, y) \quad \text{with} \quad f(x, y) = \nabla^2 (k^{-2} \sin(kx) \sin(ky)) \quad \text{and} \quad k = 25\pi \]
But is this discrete Laplacian accurate?

Without stretching

With stretching

\[\nabla^2 \varphi = f(x, y) \quad \text{with} \quad f(x, y) = \nabla^2 (k^{-2} \sin(kx) \sin(ky)) \quad \text{and} \quad k = 25\pi \]
But is this discrete Laplacian accurate?
Yes, even for distorted unstructured meshes! And symmetries are preserved!

\[\nabla^2 \varphi = f(x, y) \quad \text{with} \quad f(x, y) = \nabla^2(k^{-2} \sin(kx) \sin(ky)) \quad \text{and} \quad k = 25\pi \]
Then, why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

\[\Omega_s \frac{du_s}{dt} + C(u_s) u_s = Du_s - Gp_c; \quad Mu_s = 0_c \]

In staggered meshes
- \(p-u_s \) coupling is naturally solved \(\checkmark \)
- \(C(u_s) \) and \(D \) difficult to discretize \(\times \)
Then, why collocated arrangements are so popular?

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

\[\Omega_c \frac{du_c}{dt} + C\left(u_s\right) u_c = Du_c - G_c p_c; \quad M_c u_c = 0_c \]

In collocated meshes

- \(p-u_c \) coupling is cumbersome \(\times \)
- \(C\left(u_s\right) \) and \(D \) easy to discretize \(\checkmark \)
- Cheaper, less memory,... \(\checkmark \)
Then, why collocated arrangements are so popular?

Everything is easy except the pressure-velocity coupling...

- STAR-CCM+
- ANSYS-FLUENT
- Code-Saturne
- OpenFOAM

In collocated meshes
- $p-u_c$ coupling is cumbersome \times
- $C(u_s)$ and D easy to discretize \checkmark
- Cheaper, less memory, ... \checkmark
Pressure-velocity coupling on staggered grids

Works perfectly!
Pressure-velocity coupling on staggered grids

Works perfectly!
Pressure-velocity coupling on staggered grids
Works perfectly!
Pressure-velocity coupling on staggered grids

Works perfectly!

\[-\Omega_{s}^{-1} p_{s} - GL^{-1} M u_{s} \]

\[M u_{s} \neq 0_{c}\]
Pressure-velocity coupling on staggered grids

Works perfectly!

\[\mathbf{u}_s = \mathbf{u}_s - \mathbf{G} L^{-1} \mathbf{M} \mathbf{u}_s \]
Pressure-velocity coupling on staggered grids

Works perfectly!

\[\mathbf{u}_s = \mathbf{u}_s - \mathbf{G} \mathbf{L}^{-1} \mathbf{M} \mathbf{u}_s = (I - \Omega_s^{-1} \mathbf{P}_s) \mathbf{u}_s = \mathbf{F}_s \mathbf{u}_s \]
Pressure-velocity coupling on staggered grids

Works perfectly!

\[\mathbf{u}_s = \mathbf{u}_s - G L^{-1} \mathbf{M} \mathbf{u}_s = \left(I - \Omega_s^{-1} P_s \right) \mathbf{u}_s = \mathbf{F}_s \mathbf{u}_s \]

\[\mathbf{M} \mathbf{u}_s = \mathbf{M} \mathbf{u}_s - MG L^{-1} \mathbf{M} \mathbf{u}_s = \mathbf{0}_c \]
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

\[u \quad u_c \]

\[-\Omega_s^{-1} p_s \]

\[M \]

\[L^{-1} \]

\[G \]

\[-G p_c \]

\[u_s \quad M u_s \neq 0_c \]

\[u_c \]

\[M \Gamma_c \]
Pressure-velocity coupling on collocated grids
A vicious circle that cannot be broken...

\[\Gamma_{c \rightarrow s} u_c \]
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

\[\text{GL}^{-1} \text{M} \Gamma_{c \rightarrow s} \text{u}_c \]
Pressure-velocity coupling on collocated grids
A vicious circle that cannot be broken...

\[-\Omega_s^{-1} p_s \begin{pmatrix} -G \\ \Gamma_{s \to c} \end{pmatrix} \Gamma_{c \to s} \Omega^{-1} M \Gamma_{c \to s} u_c \]
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

\[u_c = u_c - \Gamma_{s\rightarrow c} G L^{-1} M \Gamma_{c\rightarrow s} u_c \]
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

\[u_c = u_c - \Gamma_{s \rightarrow c} G L^{-1} M \Gamma_{c \rightarrow s} u_c = F_c u_c \]
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

\[u_c = u_c - \Gamma_{s\rightarrow c} G L^{-1} M \Gamma_{c\rightarrow s} u_c = F_c u_c \]

To preserve symmetry we impose \(\Gamma_{s\rightarrow c} = \Omega_c^{-1} \Gamma_{c\rightarrow s}^T \Omega_s \). This leads to

\[M \Gamma_{c\rightarrow s} u_c = M \Gamma_{c\rightarrow s} u_c - L_c L^{-1} M \Gamma_{c\rightarrow s} u_c \approx 0_c X \]

where \(L_c = -M \Gamma_{c\rightarrow s} \Omega_c^{-1} \Gamma_{c\rightarrow s}^T M \) (wide-stencil discrete Laplacian).
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

To preserve symmetry we impose $\Gamma_{s\rightarrow c} = \Omega_c^{-1} \Gamma_{c\rightarrow s}^T \Omega_s$. This leads to

$$M \Gamma_{c\rightarrow s} u_c = M \Gamma_{c\rightarrow s} u_c - L_c L^{-1} M \Gamma_{c\rightarrow s} u_c \approx 0_c \mathbf{X}$$

where $L_c = -M \Gamma_{c\rightarrow s} \Omega_c^{-1} \Gamma_{c\rightarrow s}^T M$ (wide-stencil discrete Laplacian).

Moreover, contribution to kinetic energy: $p_c (L - L_c) p_c \neq 0 \mathbf{X}$
Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- **Mass**: \(M \Gamma_{c \rightarrow s} u_c = M \Gamma_{c \rightarrow s} u_c - L_c L^{-1} M \Gamma_{c \rightarrow s} u_c \approx 0_c X\)

- **Energy**: \(p_c (L - L_c) p_c \neq 0 X\)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- Mass: \(M\Gamma_{c\to s} u_c = M\Gamma_{c\to s} u_c - (L_c L^{-1}) M\Gamma_{c\to s} u_c \approx 0_c \times\)

- Energy: \(p_c (L - L_c) p_c \neq 0 \times\)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- **Mass**: \(M\Gamma_{c\rightarrow s} \mathbf{u}_c = M\Gamma_{c\rightarrow s} \mathbf{u}_c - \left(L_c L^{-1} \right) M\Gamma_{c\rightarrow s} \mathbf{u}_c \approx 0_c \mathbf{x} \)

- **Energy**: \(p_c(L - L_c) p_c \neq 0 \mathbf{x} \)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- Mass: \(M_{\Gamma_{c\rightarrow s}} \mathbf{u}_c = M_{\Gamma_{c\rightarrow s}} \mathbf{u}_c - \mathbf{L}_c \mathbf{L}^{-1} M_{\Gamma_{c\rightarrow s}} \mathbf{u}_c \approx 0_c \times \)

- Energy: \(p_c (\mathbf{L} - \mathbf{L}_c) p_c \neq 0 \times \)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- **Mass:** \(\mathbf{M}_{\Gamma_c \rightarrow s} \mathbf{u}_c = \mathbf{M}_{\Gamma_c \rightarrow s} \mathbf{u}_c - \mathbf{L}_c \mathbf{L}^{-1} \mathbf{M}_{\Gamma_c \rightarrow s} \mathbf{u}_c \approx \mathbf{0}_c \times \)

- **Energy:** \(\mathbf{p}_c \left(\mathbf{L} - \mathbf{L}_c \right) \mathbf{p}_c \neq 0 \times \)

Pressure-velocity coupling on collocated grids

A vicious circle that cannot be broken...

In summary\(^8\):

- **Mass**: \(M\Gamma_{c\to s}u_c = M\Gamma_{c\to s}u_c - L_c L^{-1} M\Gamma_{c\to s}u_c \approx 0_c X \)

- **Energy**: \(p_c (L - L_c) p_c \neq 0 X \)

\[^8\text{F.X.Trias, O.Lehmkuhl, A.Oliva, C.D.Pérez-Segarra, R.W.C.P.Verstappen.} \]

Pressure-velocity coupling on collocated grids
A vicious circle that cannot be broken...

In summary\(^8\):

- Mass: \(M\Gamma_{c\rightarrow s}u_c = M\Gamma_{c\rightarrow s}u_c - \left(L_c L^{-1}M\Gamma_{c\rightarrow s}u_c \approx 0_c X \right) \)
- Energy: \(p_c \left(L - L_c \right) p_c \neq 0 X \)

Pressure-velocity coupling on collocated grids
A vicious circle that cannot be broken can almost be broken...

Results for an inviscid Taylor-Green vortex

Preserving symmetries: collocated vs staggered

Pressure-velocity coupling on collocated grids
A vicious circle that cannot be broken can almost be broken...

\[\tilde{L} = L \text{ using } p'_c \]
\[\tilde{L} = L_c \]
\[p_c \perp \text{Ker}(L_c) \]

\[\tilde{L} = L \]
\[L = L_c \]
\[pc(\tilde{L} - L_c)p_c \]

Results for an inviscid Taylor-Green vortex

\[E_k(t)/E_k(0)-1 \]

Time

\[\text{SymPres PressCorr} \]
\[\text{SymPres TotPress} \]
\[\text{OpenFOAM} \]

Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations10:

Pressure-velocity coupling on collocated grids

Examples of simulations

Despite these inherent limitations, symmetry-preserving collocated formulation has been successfully used for DNS/LES simulations10:

Are staggered and collocated so different at the end?

Collocated: \[\mathbf{u}_c^{n+1} = \left(\mathbf{I}_c - \Gamma_{s\rightarrow c} \Omega_{s}^{-1} \mathbf{P}_s \Gamma_{c\rightarrow s} \right) \left(\mathbf{I}_c + \mathbf{\tilde{d}}_t \right) \mathbf{u}_c^n = \mathbf{F}_c \mathbf{T}_c \mathbf{u}_c^n \]
Are staggered and collocated so different at the end?

Collocated: \[\mathbf{u}_c^{n+1} = \left(I_c - \Gamma_{s \rightarrow c} \Omega_{s}^{-1} P_s \Gamma_{c \rightarrow s} \right) \mathbf{u}_c^n + \left[\mathbf{F}_c \mathbf{T}_c \right] \mathbf{u}_c^n \]

Naïve collocated: \[\mathbf{u}_c^{n+1} = \left(\Gamma_{s \rightarrow c} \mathbf{F}_s \mathbf{T}_c \right) \mathbf{u}_c^n \]
Are staggered and collocated so different at the end?

Collocated:

\[u_c^{n+1} = \left(I_c - \Gamma_{s\rightarrow c} \Omega_s^{-1} P_s \Gamma_{c\rightarrow s} \right) \left[I_c + \partial_t^c \right] u_c^n = \underbrace{F_c \; T_c \; u_c^n}_{\text{NS}_c} \]

Naïve collocated:

\[u_c^{n+1} = \Gamma_{s\rightarrow c} F_s \Gamma_{c\rightarrow s} T_c \; u_c^n \]

Naïve staggered:

\[u_s^{n+1} = F_s \Gamma_{c\rightarrow s} T_c \Gamma_{s\rightarrow c} u_s^n \]
Motivation

Preserving symmetries: collocated vs staggered

Building a staggered formulation

Portability and beyond

Conclusions

Are staggered and collocated so different at the end?

Collocated:

\[
\begin{align*}
\mathbf{u}_c^{n+1} &= \left(\mathbf{I}_c - \Gamma_{s\rightarrow c} \mathbf{\Omega}_s^{-1} \mathbf{P}_s \Gamma_{c\rightarrow s} \right) \left[\mathbf{I}_c + \partial_t \mathbf{T}_c \right] \mathbf{u}_c^n = \mathbf{F}_c \mathbf{T}_c \mathbf{u}_c^n \\
\end{align*}
\]

Naïve collocated:

\[
\begin{align*}
\mathbf{u}_c^{n+1} &= \Gamma_{s\rightarrow c} \mathbf{F}_s \mathbf{T}_c \mathbf{u}_c^n \\
\end{align*}
\]

Naïve staggered:

\[
\begin{align*}
\mathbf{u}_s^{n+1} &= \mathbf{F}_s \mathbf{T}_c \Gamma_{s\rightarrow c} \mathbf{u}_s^n \\
\end{align*}
\]

\[
\Gamma_{s\rightarrow c} (\mathbf{\tilde{N}S}_s)^n = (\mathbf{\tilde{N}S}_c)^n \Gamma_{c\rightarrow s}
\]
Are staggered and collocated so different at the end?

Collocated: \[u_c^{n+1} = \left(I_c - \Gamma_s \rightarrow c \Omega_s^{-1} P_s \Gamma_c \rightarrow s \right) \left(I_c + \partial_t^c \right) u_c^n = F_c T_c u_c^n \]

Staggered: \[u_s^{n+1} = \left(I_s - \Omega_s^{-1} P_s \right) \left(I_s + \Gamma_s \rightarrow c \partial_t^c \Gamma_s \rightarrow c \right) u_s \]
Can we have a staggered formulation based only on collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM.

Staggered: \(\mathbf{u}_s^{n+1} = (I_s - \Omega_s^{-1}\mathbf{P}_s) \left[I_s + \Gamma_{c \rightarrow s} \partial_t \Gamma_{s \rightarrow c} \right] \mathbf{u}_s \)

Similar approaches have been proposed in the literature before\(^{11,12,13,14,15} \).

References

Can we have a staggered formulation based only on collocated operators?

Then, it could be easily implemented in existing collocated codes such as OpenFOAM.

Staggered: $\mathbf{u}_s^{n+1} = \left(I_s - \Omega_s^{-1} P_s \right) \left[I_s + \Gamma_{c\rightarrow s} \partial_t c \Gamma_{s\rightarrow c} \right] \mathbf{u}_s$

Similar approaches have been proposed in the literature before 11,12,13,14,15.

Research question: then, why at the end collocated approach seems to be the winner?

Results for a turbulent channel flow at $Re_T = 180$

Staggered C_0: $u_s^{n+1} = (I_s - \Omega_s^{-1}P_s) [I_s + \Gamma_{c\rightarrow s} \partial_t \Gamma_{s\rightarrow c}] u_s$

![Graph showing DNS (KMM) results with y+ on the y-axis and y+ on the x-axis.](image)
Results for a turbulent channel flow at $Re_T = 180$

Staggered C^0_s:

$u_{s}^{n+1} = \left(I_s - \Omega_s^{-1} P_s \right) \left[I_s + \Gamma_{c \rightarrow s} \partial_t \Gamma_{s \rightarrow c} \right] u_s$

$$
\begin{align*}
\text{DNS (KMM)} \\
\text{16x16x8}
\end{align*}
$$
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^0: \[u_{s}^{n+1} = (I_s - \Omega_s^{-1} P_s) \left[I_s + \Gamma_{c \to s} \partial_t \Gamma_{s \to c} \right] u_s \]

\begin{figure}
\centering
\includegraphics[width=\textwidth]{channel_flow_results}
\caption{Comparison of DNS (KMM) with different grid resolutions.}
\end{figure}
Results for a turbulent channel flow at $Re_T = 180$

Staggered C^0_s: $u^{n+1}_s = (I_s - \Omega^{-1}_s P_s) \left[I_s + \Gamma_{c\rightarrow s} \frac{\partial c}{\partial \tau} \Gamma_{s\rightarrow c} \right] u_s$
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^0: $u_{s}^{n+1} = (I_s - \Omega_s^{-1}P_s)\left[I_s + \Gamma_{c\rightarrow s} \partial_t \Gamma_{s\rightarrow c} \right] u_s$
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^0:

$$u_{s}^{n+1} = (I_s - \Omega_s^{-1} P_s) \left[F_s + \Gamma_{c\rightarrow s} \frac{\partial}{\partial t} \Gamma_{s\rightarrow c} \right] u_s$$

![Graph showing DNS results for different grid resolutions](image-url)
Dispersion errors analysis

Staggered C_s^0:

$$u_s^{n+1} = (l_s - \Omega_s^{-1} P_s) \left[l_s + \Gamma_c \partial_t \Gamma_s \right] u_s$$

F_s and T_s
Dispersion errors analysis

Staggered C_s^0:

$$u_s^{n+1} = \left(I_s - \Omega_s^{-1} P_s \right) \left[I_s + \left\{ \Gamma_{c\rightarrow s} \partial_t \Gamma_{s\rightarrow c} \right\} u_s \right]$$

\[F_s \]

\[T_s \]
Dispersion errors analysis

Staggered C_s^1: $u_{s}^{n+1} = (I_s - \Omega_s^{-1}P_s) \left(I_s + F_{s} \Gamma_{c\rightarrow s} \partial_t \Gamma_{s\rightarrow c} \bar{F} \right) u_s$

Filter: $\bar{F} = \Gamma_{s\rightarrow c} \Gamma_{c\rightarrow s}$ ($\bar{F} = \bar{F}^T$ and positive semi-definite)
Dispersion errors analysis

Staggered C_s^2: $u_s^{n+1} = (I_s - \Omega_s^{-1} P_s) \left[I_s + \tilde{F} \tilde{F} \Gamma_{c \rightarrow s} \partial_t \Gamma_{s \rightarrow c} \tilde{F} \tilde{F} \right] u_s$

Filter: $\tilde{F} = \Gamma_{s \rightarrow c} \Gamma_{c \rightarrow s}$ ($\tilde{F} = \tilde{F}^T$ and positive semi-definite)
Results for a turbulent channel flow at $Re_τ = 180$

Staggered C_s^2: \[
\mathbf{u}^{n+1}_s = (I_s - \Omega_s^{-1} P_s) \left[I_s + \mathcal{F} \mathcal{F} \Gamma_{c \rightarrow s} \partial_t \mathcal{G}_{s \rightarrow c} \mathcal{F} \mathcal{F} \right] \mathbf{u}_s
\]

![Graph showing DNS (KMM) results](image-url)
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^2: \[u_s^{n+1} = (I_s - \Omega_s^{-1} P_s) \left[I_s + \sum_{c \to s} \Gamma_c \partial_t^{c} \Gamma_{s \to c} \sum_{T_s} \right] u_s \]
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^2: $u_{s}^{n+1} = (I_s - \Omega_s^{-1}P_s) \left[I_s + \int_{\Gamma_{s \rightarrow c}} \partial_t \Gamma_{s \rightarrow c} \right] u_s$

Graph showing DNS (KMM) results for different grid resolutions: $32 \times 32 \times 16$, $16 \times 16 \times 8$.
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^2:

$$u_s^{n+1} = (I_s - \Omega_s^{-1}P_s)\left(\sum_{s \to c} \Gamma \partial_t \Gamma_{s \to c} \bar{F} \Gamma_c \nabla_{s} \Gamma_{c \to s} \bar{F} \right) u_s$$

![Graph showing DNS (KMM) results with different grid resolutions: 64x64x32, 32x32x16, 16x16x8.](attachment:graph.png)
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^2: $u_{s}^{n+1} = (I_s - \Omega_s^{-1}P_s) \left[I_s + \tilde{F} \tilde{F} \Gamma_{c \rightarrow s} \partial_{t} \Gamma_{s \rightarrow c} \tilde{F} \tilde{F} \right] u_s$

![Graph showing DNS results for different resolutions](image-url)
Results for a turbulent channel flow at $Re_T = 180$

Staggered C_s^2: $u_{s}^{n+1} = \left(I_s - \Omega_{s}^{-1} P_s \right) \left[I_s + \tilde{F} \tilde{F} \Gamma_{c \rightarrow s} \partial_t \Gamma_{s \rightarrow c} \tilde{F} \tilde{F} \right] u_s$

![Graph showing DNS results for various resolutions]

- DNS (KMM)
- 160x160x80
- 128x128x64
- 64x64x32
- 32x32x16
- 16x16x8
Results for a turbulent channel flow at $Re_\tau = 180$

Staggered C_s^2:

$$u_s^{n+1} = (I_s - \Omega_s^{-1} P_s) \left[I_s + \tilde{F}_s \Gamma_{c \rightarrow s} \partial_t \Gamma_{s \rightarrow c} \tilde{F}_s \right] u_s$$
Algebra-based approach naturally leads to portability

Research question #2:

- How can we develop **portable** and **efficient** CFD codes for large-scale simulations on modern supercomputers?

HPC^2: portable, algebra-based framework for heterogeneous computing is being developed. Traditional stencil-based data and sweeps are replaced by algebraic structures (sparse matrices and vectors) and kernels. NUMA-aware execution strategies for CFD are presented in this conference\(^\text{16}\).

\(^\text{16}\) X. Álvarez, A. Gorobets, F.X. Trias, A. Oliva. *NUMA-aware strategies for the efficient execution of CFD simulations on CPU supercomputers* ParCFD2021. Don’t miss it!
Algebra-based approach naturally leads to portability, to simple and analyzable formulations.

Collocated:

\[u_c^{n+1} = (I_c - \Gamma_{s\to c} \Omega_{s}^{-1} P_s \Gamma_{c\to s}) \left(I_c + \partial_t^c \right) u_c^n = F_c T_c u_c^n \]

Staggered:

\[u_s^{n+1} = (I_s - \Omega_s^{-1} P_s) \left(I_s + \Gamma_{c\to s} \partial_t^c \Gamma_{s\to c} \right) u_s = F_s T_s u_s \]
Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies17 to improve its performance...

17 A.Alsalti, X.Álvarez, F.X.Trias, A.Gorobets, A.Oliva. A highly portable heterogeneous implementation of a Poisson solver for flows with one periodic direction ParCFD2021. Don’t miss it!
Algebra-based approach naturally leads to portability, to simple and analyzable formulations and opens the door to new strategies17 to improve its performance...

\[\hat{L} = SLS^{-1} = I \otimes L_{\text{inn}} + \text{diag}(d) \]

SpMMV can be used \implies higher AI

\footnote{A.Alsalti, X.Álvarez, F.X.Trias, A.Gorobets, A.Oliva. A highly portable heterogeneous implementation of a Poisson solver for flows with one periodic direction ParCFD2021. Don’t miss it!}
Concluding remarks

- **Preserving symmetries** either using staggered or collocated formulations is the key point for **reliable LES/DNS** simulations.
Preserving symmetries either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.

Main drawback of collocated formulations: you either have checkerboard or some (small) amount of artificial dissipation due to pressure term.
Concluding remarks

- **Preserving symmetries** either using staggered or collocated formulations is the key point for **reliable LES/DNS** simulations.

- Main drawback of **collocated** formulations: you either have **checkerboard** or some (small) amount of **artificial dissipation** due to pressure term.

- Despite this, the CFD community have generally adopted collocated formulations due to the inherent difficulties to formulate a simple and robust staggered discretization of momentum.

 ➔ A potential solution has been presented here...
Concluding remarks

- **Preserving symmetries** either using staggered or collocated formulations is the key point for reliable LES/DNS simulations.

- Main drawback of **collocated** formulations: you either have **checkerboard** or some (small) amount of **artificial dissipation** due to pressure term.

- Despite this, the CFD community have generally adopted collocated formulations due to the inherent difficulties to formulate a simple and robust staggered discretization of momentum. → A potential solution has been presented here...

On-going research:

- Complete the analysis for higher Re_{τ}

- Test for complex geometries using unstructured meshes
Thank you for your virtual attendance