Symmetry-preserving discretizations in (unstructured) staggered meshes

N. Valle1,2, F.X. Trias1 and R.W.C.P Verstappen2

1Technical University of Catalonia and 2University of Groningen

ETMM 13, Rhodes, Greece, 15-17 September 2021
Overview

1. Motivation
2. Laplacian
3. Convection
4. Discussion
5. Conclusions
Context: DNS of Turbulence

- Expensive
- Reliable
- Effective
Context: DNS of Turbulence

- Expensive
- Reliable
- Effective
Context: DNS of Turbulence

- Expensive
- Reliable
- Effective
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]

\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]

\[\Omega \frac{d\vec{u}_f}{dt} + C(\vec{u}_f)\vec{u}_f = -\Omega G\rho_c + L\vec{u}_f \]

Mathematical → physical properties

\[\int_\Omega abd\Omega = (a, b) \]

\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]

\[(\nabla \cdot \vec{u}, \rho) = (\vec{u}, \nabla \rho) \]

\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[(\nabla \cdot \vec{u}, p) \leq 0 \]

\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[(a_h, b_h) = a_h^T \Omega b_h \]

\[C(\vec{u}_f) = -C(\vec{u}_f)^T \]

\[D = -\Omega G^T \]

\[(L\phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]
\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]
\[\Omega \frac{d\mathbf{u}_f}{dt} + C(u_f)u_f = -\Omega G\rho_c + L\mathbf{u}_f \]

Mathematical \(\rightarrow \) physical properties

\[\int_{\Omega} abd\Omega = (a, b) \]
\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]
\[(\nabla \cdot \vec{u}, \rho) = (\vec{u}, \nabla \rho) \]
\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[(a_h, b_h) = a_h^T \Omega b_h \]
\[C(u_f) = -C(u_f)^T \]
\[D = -\Omega G^T \]
\[(L\phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]

\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]

\[Du_f = 0 \]

\[\Omega \frac{d u_f}{d t} + C(u_f)u_f = -\Omega G \rho_c + Lu_f \]

Mathematical \rightarrow physical properties

\[\int_{\Omega} a b d\Omega = (a, b) \]

\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]

\[(\nabla \cdot \vec{u}, \rho) = (\vec{u}, \nabla \rho) \]

\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[(a_h, b_h) = a_h^T \Omega b_h \]

\[C(u_f) = -C(u_f)^T \]

\[D = -\Omega G^T \]

\[(L \phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]

\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]

\[\partial_t \mathbf{u} + C(\mathbf{u}) \mathbf{u} = -\nabla p + \nu \nabla^2 \mathbf{u} \]

Mathematical \rightarrow physical properties

\[\int_{\Omega} abd\Omega = (a, b) \]

\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]

\[(\nabla \cdot \vec{u}, \rho) = (\vec{u}, \nabla \rho) \]

\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega G\rho_c + Lu_f \]

\[(a_h, b_h) = a_h^T \Omega b_h \]

\[C(u_f) = -C(u_f)^T \]

\[D = -\Omega G^T \]

\[(L\phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]

\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]

Mathematical \rightarrow physical properties

\[\int_\Omega abd\Omega = (a, b) \]

\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]

\[(\nabla \cdot \vec{u}, p) = (\vec{u}, \nabla p) \]

\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]

\[Du_f = 0 \]

\[\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega G\rho_c + Lu_f \]

\[\int_\Omega abd\Omega = (a, b) \]

\[(a_h, b_h) = a_h^T \Omega b_h \]

\[C(u_f) = -C(u_f)^T \]

\[D = -\Omega G^T \]

\[(L\phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]
\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]
\[\Omega \frac{d\vec{u}_f}{dt} + C(u_f)u_f = -\Omega G\rho_c + Lu_f \]

Mathematical → physical properties

\[\int_{\Omega} abd\Omega = (a, b) \]
\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]
\[(\nabla \cdot \vec{u}, p) = (\vec{u}, \nabla p) \]
\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]
\[(L\phi_h, \phi_h) \leq 0 \]
Context: The physics

The incompressible Navier-Stokes.

\[\nabla \cdot \vec{u} = 0 \]
\[\frac{\partial \vec{u}}{\partial t} + C(\vec{u}, \vec{u}) = -\nabla p + \nu \nabla^2 \vec{u} \]
\[\Omega \frac{d\vec{u}_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f \]

Mathematical → physical properties

\[\int_{\Omega} abd\Omega = (a, b) \]
\[(C(\vec{u}, \phi), \rho) = - (\phi, C(\vec{u}, \rho)) \]
\[(\nabla \cdot \vec{u}, \rho) = (\vec{u}, \nabla \rho) \]
\[(\nu \nabla^2 \vec{u}, \vec{u}) \leq 0 \]
\[(a_h, b_h) = a_h^T \Omega b_h \]
\[C(u_f) = -C(u_f)^T \]
\[D = -\Omega G^T \]
\[(L\phi_h, \phi_h) \leq 0 \]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated

- simple
- \(D \neq -\Omega G^T \)

Staggered

- \(D = -\Omega G^T \)
- complex

Idea

Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega G p_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- \(D \neq -\Omega G^T \)

Staggered
- \(D = -\Omega G^T \)
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[Du_f = 0_c \]
\[\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f \]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- $D \neq -\Omega G^T$

Staggered
- $D = -\Omega G^T$
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[Du_f = 0_c \]
\[\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f \]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- $D \neq -\Omega G^T$

Staggered
- $D = -\Omega G^T$
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[
D u_f = 0_c
\]
\[
\Omega \frac{d u_f}{d t} + C(u_f) u_f = -\Omega G p_c + L u_f
\]
Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- $D \neq -\Omega G^T$

Staggered
- $D = -\Omega G^T$
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- $D \neq -\Omega G^T$

Staggered
- $D = -\Omega G^T$
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c
\]
\[
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega G p_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- \(D \neq -\Omega G^T \)

Staggered
- \(D = -\Omega G^T \)
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

- Collocated
 - simple
 - $D \neq -\Omega G^T$

- Staggered
 - $D = -\Omega G^T$
 - complex

Idea

Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega Gp_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- \(D \neq -\Omega G^T \)

Staggered
- \(D = -\Omega G^T \)
- complex

Idea

Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + [C(u_f)u_f] = -\Omega Gp_c + Lu_f
\]
Context: existing codes

Collocated arrangement is preferred by most popular codes.

Collocated
- simple
- $D \neq -\Omega G^T$

Staggered
- $D = -\Omega G^T$
- complex

Idea
Can we reuse collocated codes to construct staggered formulations?

\[
Du_f = 0_c \\
\Omega \frac{du_f}{dt} + C(u_f)u_f = -\Omega G_p + Lu_f
\]
Operators

Collocated operators defined over and arbitrary unstructured mesh

- Dual gradient $\tilde{\nabla}$
- Curl $\tilde{\mathbf{R}}$
- Divergence $\tilde{\mathbf{D}}$
- Laplacian ∇^2
- Convection \mathbf{V}_c

N. Valle, F.X. Trias and R.W.C.P Verstappen
Collocated operators defined over and arbitrary unstructured mesh
Operators

Collocated operators defined over an arbitrary unstructured mesh

- Dual gradient \tilde{G}
- Curl R
- Divergence D
Operators

Collocated operators defined over and arbitrary unstructured mesh

Dual gradient \tilde{G}

Curl R

Dual Curl \tilde{R}

Divergence D
Operators

Collocated operators defined over an arbitrary unstructured mesh

- Dual gradient \tilde{G}
- Curl R
- Dual Curl \tilde{R}
- Divergence D
Rotational formulation: \(\nabla^2 \vec{u} = \nabla \times \nabla \times \vec{u} - \nabla \nabla \cdot \vec{u} \)

\[L = R\tilde{R} - \tilde{G}D \]
Motivation Laplacian Convection Discussion Conclusions

Laplacian L

Rotational formulation: \(\nabla^2 \vec{u} = \nabla \times \nabla \times \vec{u} - \nabla \nabla \cdot \vec{u} \)

\[L = \tilde{R} \tilde{R} - \tilde{G} \tilde{D} \]
Rotational formulation: $\nabla^2 \vec{u} = \nabla \times \nabla \times \vec{u} - \nabla \nabla \cdot \vec{u}$

$L = R \tilde{R} - \tilde{GD}$
Rotational formulation: $\nabla^2 \vec{u} = \nabla \times \nabla \times \vec{u} - \nabla \nabla \cdot \vec{u}$
Laplacian L

Application to Cartesian grids.

Recovers Harlow and Welch ✓
Laplacian L

Application to Cartesian grids.

Recovers Harlow and Welch ✓
Laplacian L

Application to Cartesian grids.

Recovers Harlow and Welch ✓
Laplacian L

Application to Cartesian grids.

Recovers Harlow and Welch ✓
Convection $C(u_f)$

Baseline: Harlow and Welch $\nabla \cdot (\vec{u} \otimes \vec{u})$

Research question: How to define in non-Cartesian meshes?
Convection $C(u_f)$

Baseline: Harlow and Welch $\nabla \cdot (\vec{u} \otimes \vec{u})$

Research question: How to define in non-Cartesian meshes?.
Convection $C(u_f)$

Baseline: Harlow and Welch $\nabla \cdot (\vec{u} \otimes \vec{u})$

Research question: How to define in non-Cartesian meshes?
Convection $C(u_f)$

Baseline: Harlow and Welch $\nabla \cdot (\bar{u} \otimes \bar{u})$

Research question: How to define in non-Cartesian meshes?.
Convection $C(u_f)$

Baseline: Harlow and Welch $\nabla \cdot (\vec{u} \otimes \vec{u})$

Research question: How to define in non-Cartesian meshes?
Previous attempts

Rotational formulation \(\nabla \cdot (\ddot{\vec{u}} \otimes \ddot{\vec{u}}) = \ddot{\vec{u}} \times \nabla \times \ddot{\vec{u}} + \frac{1}{2} \nabla (\ddot{\vec{u}} \cdot \ddot{\vec{u}}) \)

Recovers Harlow and Welch \(\times \)

Chain rule does not hold at the discrete level.
Previous attempts

Rotational formulation $\nabla \cdot (\bar{u} \otimes \bar{u}) = \bar{u} \times \nabla \times \bar{u} + \frac{1}{2} \nabla (\bar{u} \cdot \bar{u})$

Recovers Harlow and Welch \times

Chain rule does not hold at the discrete level.
Previous attempts

Rotational formulation $\nabla \cdot (\tilde{u} \otimes \tilde{u}) = \tilde{u} \times \nabla \times \tilde{u} + \frac{1}{2} \nabla (\tilde{u} \cdot \tilde{u})$

Recovers Harlow and Welch \times

Chain rule does not hold at the discrete level.
Previous attempts

Rotational formulation $\nabla \cdot (\bar{u} \otimes \bar{u}) = \bar{u} \times \nabla \times \bar{u} + \frac{1}{2} \nabla (\bar{u} \cdot \bar{u})$

Recovers Harlow and Welch \times

Chain rule does not hold at the discrete level.
Previous attempts

Interpolated formulation $C_s^0(u) = \Gamma_{c\rightarrow s} C_c(u) \Gamma_{s\rightarrow c}$

Recovers Harlow and Welch ×
Larger stencil.
Previous attempts

Interpolated formulation $C^0_s(u) = \Gamma_{c\to s} C_c(u) \Gamma_{s\to c}$

Recovers Harlow and Welch ×
Larger stencil.
Previous attempts

Interpolated formulation $C^0_s(u) = \Gamma_{c\rightarrow s} C_c(u) \Gamma_{s\rightarrow c}$

Recovers Harlow and Welch ×
Larger stencil.
Previous attempts

Interpolated formulation $C_s^0(u) = \Gamma_{c\rightarrow s} C_c(u) \Gamma_{s\rightarrow c}$

Recovers Harlow and Welch \times

Larger stencil.
Previous attempts

Interpolated formulation $C_s^0(u) = \Gamma_{c\rightarrow s} C_c(u) \Gamma_{s\rightarrow c}$

Recovers Harlow and Welch ×
Larger stencil.
CF180 - Interpolated

Channel flow at \(Re_\tau = 180 \). Cartesian mesh.
Our attempt

Recovers Harlow and Welch ✓
Our attempt

Construct the explicit staggered control volume.

\[
\begin{align*}
\vec{F}_c^i &= \bar{u} \, SP_{f \to c}^i \, u_f \\
(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \\
\vec{F}_e^i &= \bar{u}_e \, SP_{f \to e}^i \, u_f \\
(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_{ei} \cdot \left(\hat{n}_f \times \vec{f}_e \right) \, L_e \Delta x
\end{align*}
\]

Project over the face normal
Our attempt

Construct the explicit staggered control volume.

\[\vec{F}_i^c = \vec{u} \, \text{SP}_{i \to c} \, u_f \]
\[(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \]
\[\vec{F}_e^i = \vec{u}_e \, \text{SP}_{i \to e} \, u_f \]
\[(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_{e i} \cdot \left(\hat{n}_f \times \hat{t}_e \right) L_e \Delta x \]

Project over the face normal.
Our attempt

Construct the explicit staggered control volume.

\[
\vec{F}_c^i = \vec{u} SP_{f\rightarrow c}^i u_f \\
(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \\

\vec{F}_e^i = \vec{u}_e SP_{f\rightarrow e}^i u_f \\
(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_e^i \cdot (\hat{n}_f \times \hat{t}_e) L_e \Delta x
\]

Project over the face normal
Our attempt

Construct the explicit staggered control volume.

\[\vec{F}_c^i = \bar{u} \left[S_{P_f \rightarrow c} \right] u_f \]

\[(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \]

\[F_e^i = \bar{u}_e \left[S_{P_f \rightarrow e} \right] u_f \]

\[(\Delta x S_f)^{-1} \sum_{e \in f} \pm F_{ei} \cdot \left(\hat{n}_f \times \hat{f}_e \right) L_e \Delta x \]

Project over the face normal
Our attempt

Construct the explicit staggered control volume.

\[
\vec{F}_c^i = \vec{u} \left[SP_{f \rightarrow c}^i \right] u_f \\
(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i
\]

\[
F_e^i = \vec{u}_e \left[SP_{f \rightarrow e}^i \right] u_f \\
(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_{e}^i \cdot \left(\hat{n}_f \times \hat{t}_e \right) L_e \Delta x
\]

Project over the face normal
Our attempt

Construct the explicit staggered control volume.

\[\vec{F}_c^i = \vec{u} \left[SP_{f \rightarrow c}^i \right] u_f \]
\[(\Delta x)^{-1} \hat{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \]
\[F_e^i = \vec{u}_e \left[SP_{f \rightarrow e}^i \right] u_f \]
\[(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_{ei} \cdot \left(\hat{n}_f \times \hat{t}_e \right) \]

Project over the face normal.
Our attempt

Construct the explicit staggered control volume.

\[\vec{F}_c^i = \vec{u} \left[SP_{f \rightarrow c}^{i} \right] u_f \]
\[(\Delta x)^{-1} \vec{n}_f \cdot \sum_{c \in f} \pm \vec{F}_c^i \]
\[\vec{F}_e^i = \vec{u}_e \left[SP_{f \rightarrow e}^{i} \right] u_f \]
\[(\Delta x S_f)^{-1} \sum_{e \in f} \pm \vec{F}_e^i \cdot \left(\vec{n}_f \times \hat{t}_e \right) L_e \Delta x \]

Project over the face normal
Channel flow at $Re_\tau = 180$. Cartesian mesh.
Dispersion relation

\[C_s = \Gamma_c \rightarrow s \quad C_c \rightarrow c \]

\[\text{Modified wavenumber} \]

\[\text{Wavenumber} \]

N. Valle, F.X. Trias and R.W.C.P Verstappen
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Closure

Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Conclusions

- Construction of L in unstructured meshes.
- Construction of $C(u_f)$ is not trivial, but possible.
- Interpolation schemes may not preserve spectral properties.

Future work

- Implement L and $C(u_f)$ in unstructured meshes.
- Assess its performance in canonical flow configurations.
Thank you for your attention.