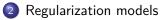
Numerical simulation of turbulence at lower costs: regularization modeling

F.Xavier Trias*, Andrey Gorobets*,*, Manel Soria*, Assensi Oliva*

*Heat and Mass Transfer Technological Center Technical University of Catalonia *Keldysh Institute of Applied Mathematics of RAS, Russia

Parallel Computational Fluid Dynamics Barcelona, 16-20 May 2011

Contents

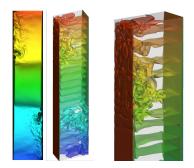


- 3 Discretizing C_n regularizations
- 4 Results for a DHC

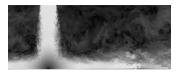
DNS of turbulent incompressible flows on MareNostrum

Main features of the DNS code:

- Structured staggered grids
- High-order symmetry-preserving schemes
- Fully-explicit second-order time-integration method
- Poisson solver for 2.5D problems: FFT + PCG
- Hybrid MPI+OpenMP parallelization



Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points)



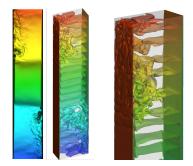
Plane impingement jet at Re = 20000 (102M grid points)

DNS of turbulent incompressible flows on MareNostrum



Wall-mounted cube at Re = 7240 (17M grid points)

Square cylinder at Re = 22000 (75M grid points)

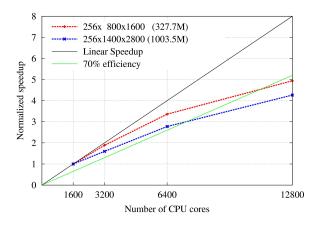


Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points)



Plane impingement jet at Re = 20000 (102M grid points)

Scaling? Yes¹, we can... but never enough



¹A. Gorobets *et al.* "Hybrid MPI+OpenMP parallelization of an FFT-based 3D Poisson solver with one periodic direction" **Computers&Fluids**, (accepted)

Governing equations

Incompressible Navier-Stokes equations:

$$\nabla \cdot u = 0$$

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D}(u) - \nabla p$$

where the nonlinear convective term is given by

 $\mathcal{C}(u,\phi) = (u \cdot \nabla)\phi$

and the linear dissipative term is given by

$$\mathcal{D}(\phi) = \nu \Delta \phi$$

Regularization modeling

As the full energy spectrum cannot be computed, a **dynamically less complex mathematical formulation** is sought. We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

such approximations may fall in the Large-Eddy Simulation (LES) concept,

$$\partial_t ar{u}_\epsilon + \mathcal{C}(ar{u}_\epsilon, ar{u}_\epsilon) \;\; = \;\; \mathcal{D}(ar{u}_\epsilon) -
abla ar{p}_\epsilon + \mathcal{M}_1(ar{u}_\epsilon, ar{u}_\epsilon)$$

if the filter is invertible:

$$\mathcal{M}_1(\bar{u}_{\epsilon}, \bar{u}_{\epsilon}) = \mathcal{C}(\bar{u}_{\epsilon}, \bar{u}_{\epsilon}) - \overline{\widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon})}$$

Previous regularization modelings

Leray and Navier-Stokes- α models

The regularization methods basically **alters the convective term** to **restrain the production of small scales** of motion.

• Leray model:

$$\partial_t u_{\epsilon} + \mathcal{C}(\bar{u}_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

• Navier-Stokes- α model:

$$\partial_t u_{\epsilon} + C_r(u_{\epsilon}, \bar{u}_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla \pi_{\epsilon}$$

where the $\pi = p + u^2/2$ and the convective operator in rotational form is defined as $C_r(u, v) = (\nabla \times u) \times v$

However, in doing so some of the **inviscid invariants** (kinetic energy, enstrophy in 2D and helicity in 3D) are **not conserved**.

Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

- Kinetic energy : (u, u)
- Enstrophy (in 2D) : (ω, ω)
- Helicity (in 3D) : (ω, u)

where $(a, b) = \int_{\Omega} a \cdot b d\Omega$ and $\omega = \nabla \times u$; the **approximate convective operator** must be **skew-symmetric**:

$$\left(\widetilde{\mathcal{C}}(u,\phi_1),\phi_2\right) = -\left(\widetilde{\mathcal{C}}(u,\phi_2),\phi_1\right)$$

Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations²,

$$\partial_t u_\epsilon + \mathcal{C}_n(u_\epsilon, u_\epsilon) = \mathcal{D}(u_\epsilon) - \nabla p_\epsilon$$

in which the convective term in smoothed according to:

where $u' = u - \bar{u}$ and $C_n(u, \phi) = C(u, \phi) + O(\epsilon^n)$ for any symmetric filter.

²Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008

Discretizing the C_n regularization modeling

The regularizations C_n are constructed in a way that the **symmetry properties** are exactly **preserved**.

Of course, the same should hold for the numerical approximations.

For this the basic ingredients are twofold:

- A symmetry-preserving spatial discretization of the original NS equations.
- A normalized self-adjoint linear filter.

Symmetry-preserving discretization of NS equations

The spatially discrete incompressible Navier-Stokes equations read

$$\Omega_s \frac{d\boldsymbol{u}_s}{dt} + \mathsf{C}(\boldsymbol{u}_s)\boldsymbol{u}_s = \mathsf{D}\boldsymbol{u}_s - \Omega_s \mathsf{G}\boldsymbol{p}_c ; \qquad \mathsf{M}\boldsymbol{u}_s = \boldsymbol{0}_c$$

Symmetries of underlying continuous operators must be preserved!

$$C = -C^T \longrightarrow u_s^T C u_s = 0 \text{ and } \lambda_C \in \mathbb{I}$$

no false dissipation, only transport!

 $D = D^{T} \quad def - \longrightarrow \quad \boldsymbol{u}_{s}^{T} D \boldsymbol{u}_{s} < 0 \text{ and } D \hat{\boldsymbol{u}}_{k} = \lambda_{D} \hat{\boldsymbol{u}}_{k} \text{ , } \lambda_{D} \in \mathbb{R}^{-}$ pure diffusion, no transport!

$$-\Omega_s \mathbf{G} = \mathbf{M}^T \longrightarrow -\boldsymbol{u}_s^T \Omega_s \mathbf{G} \boldsymbol{p}_c = 0$$
no contribution to total kinetic energy!

to preserve the continuous inviscid invariants in a discrete sense.

Basic properties

$$\overline{u_s} = F u_s$$

Four properties are required:

- i) Symmetry, $\Omega_s F = (\Omega_s F)^T$
- ii) $\mathsf{M}\boldsymbol{u}_s = \boldsymbol{0}_c \longrightarrow \mathsf{M}\boldsymbol{F}\boldsymbol{u}_s = \boldsymbol{0}_c$
- iii) Normalization, F1 = 1

iv) ... and of course, it must effectively damp the high-frequency components. **But, how much?**

Stopping the vortex-stretching³

Taking the curl of momentum equation the vorticity transport equation follows

$$\partial_t \omega + \mathcal{C}(u, \omega) = \mathcal{C}(\omega, u) + \mathcal{D}(\omega)$$

Let us now consider an arbitrary part of the flow domain, Ω , with periodic boundary conditions. Then, taking the L^2 innerproduct with $\omega = \nabla \times u$ leads to the enstrophy equation

$$\frac{1}{2}\frac{d}{dt}(\omega,\omega) = (\omega,\mathcal{C}(\omega,u)) - \nu (\nabla \omega,\nabla \omega)$$

where $(a, b) = \int_{\Omega} a \cdot b d\Omega$. Unless, the grid is fine enough convection dominates diffusion

 $(\omega, \mathcal{C}(\omega, u)) > \nu (\nabla \omega, \nabla \omega)$

³F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010

Stopping the vortex-stretching

The vortex-stretching term can be expressed in terms of the invariant $r = -1/3tr(S^3)$

$$(\omega, \mathcal{C}(\omega, u)) = 4 \int_{\Omega} r d\Omega$$
 (1)

whereas the $L^2(\Omega)$ -norm of ω in terms of the invariant $q = -1/2tr(S^2)$

$$(\omega,\omega)=-4\int_{\Omega}qd\Omega$$

Then, the diffusive term can be bounded by

$$\nu (\nabla \omega, \nabla \omega) = -\nu (\omega, \Delta \omega) \leq -\nu \lambda_{\Delta} (\omega, \omega) = 4\nu \lambda_{\Delta} \int_{\Omega} q d\Omega \qquad (2)$$

where $\lambda_{\Delta} < 0$ is the largest (smallest in absolute value) non-zero eigenvalue of Laplacian operator Δ on Ω . If we now consider that the domain is a periodic box of volume h, then $\lambda_{\Delta} = -(\pi/h)^2$.

Stopping the vortex stretching

 \Longrightarrow In the present work we determine the filter width ϵ from

$$(\omega, \mathcal{C}_4(\omega, u)) \approx f_4(\hat{g}_k(\epsilon))(\omega, \mathcal{C}(\omega, u)) \leq \nu (\nabla \omega, \nabla \omega)$$

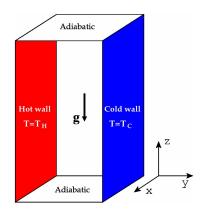
Then, recalling identity (1) and inequality (2), we propose to rewrite the previous inequality in terms of the invariants q and r

$$f_4(\hat{g}_k) = min\left\{
u\lambda_\Deltarac{m{q}}{r^+},1
ight\} \qquad ext{with} \quad r^+ = max(r,0)$$

Notice that q < 0 (dissipation) whereas r can be either positive or negative.

- Switches off $(f_4 = 1)$ for: laminar $(r \to 0)$, 2D flows (r = 0) and for fine enough meshes, $|\nu\lambda_{\Delta}q/r| \ge 1$.
- Consistent near-wall behavior $r \propto y^3$ and $q \propto y^0$.
- Consistent with the preferential vorticity alignment with the intermediate eigenvector, λ_2 (experimentally observed)

Test-case: Differentially Heated Cavity



Boundary conditions:

- Isothermal vertical walls
- Adiabatic horizontal walls
- **Periodic** boundary conditions in the spanwise direction

Dimensionless governing numbers:

• $Ra = \beta \Delta T L_z^3 g/(\alpha \nu)$

•
$$\Pr = \nu/\alpha$$

• Height aspect ratio $A_z = L_z/L_y$

• Depth aspect ratio
$$A_x = L_x/L_y$$

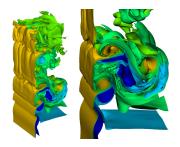
DNS^{4,5} results for $Ra = 10^{11}$, Pr = 0.71

Some details about **DNS**:

- Mesh size: $128 \times 682 \times 1278$
- $\bullet~\approx$ 3 months 256 CPUs
- 4th-order symmetry-preserving scheme
- *A*_z = 4

Complexity of the flow:

- Boundary layers
- Stratified cavity core
- Internal waves
- Recirculation areas



 4 F. X. Trias *et al.* Int. Journal of Heat and Mass Transfer, 53:665-673, 2010 5 F. X. Trias *et al.* Int. Journal of Heat and Mass Transfer, 53:674-683, 2010

Results for differentially heated cavity at $Ra = 10^{11}$

- Regularization model \mathcal{C}_4 is tested.
- Two coarse meshes are considered

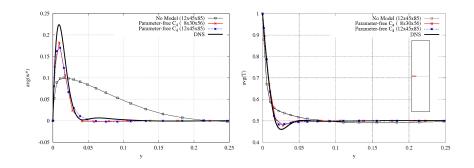
	DNS	RM1	RM2
Nx	128	12	8
Ny	682	45	30
Nz	1278	85	56

• The **discrete linear filter**⁶ is based on polynomial functions of the discrete diffusive operator, D

⁶F.X. Trias and R.W.C.P. Verstappen, Computers & Fluids, 40:139-148, 2011

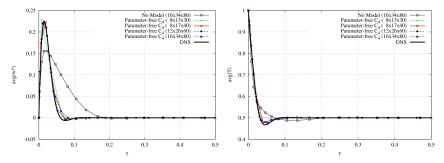
Results for differentially heated cavity at $Ra = 10^{11}$

Profiles



Averaged vertical velocity and temperature profiles at the horizontal mid-height plane.

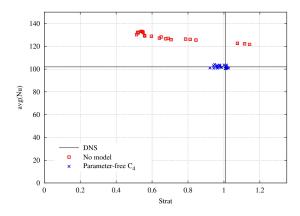
How does the parameter-free \tilde{C}_4 regularization modeling behave for other grids and *Ra*-numbers?



Averaged vertical velocity and temperature profiles at the horizontal mid-height plane at $Ra = 10^{10}$.

Even for a **very coarse** $8 \times 13 \times 30$ grid **reasonable results** are obtained! \implies Results for different grids show the **robustness** of the method.

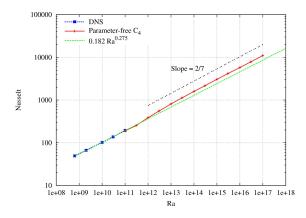
Challenging C_4 : mesh independence analysis



The overall Nusselt number and the centerline stratification for 50 randomly generated coarse grids with fixed stretching at $Ra = 10^{10}$.

 $8 \le N_x \le 16$, $17 \le N_y \le 34$, and $40 \le N_z \le 80$.

Performance at very high Rayleigh numbers



Meshes have been generated with the criteria of keeping the same number of points in the BL than for $Ra = 10^{10}$.

Conclusions and Future Research

The results shown illustrate the potential of the conservative parameter-free $\widetilde{\mathcal{C}}_4$ smoothing as a new simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

- **Robustnest**. As the smoothed governing equations preserve the symmetry properties of the original NS equations the solution cannot blow up (in the energy-norm, in 2D also: enstrophy-norm). It seems that even for very coarse meshes reasonably results can be obtained.
- **Universality**. No *ad hoc* phenomenological arguments that cannot be formally derived for the NS equations are used.
- The proposed method constitutes a **parameter-free turbulence model**.

Thank you for you attention

Further reading about C_4 regularization

- Roel Verstappen, "On restraining the production of small scales of motion in a turbulent channel flow", Computers & Fluids, 37 (7): 887-897, 2008
- F. X. Trias et al., "Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity", Computers & Fluids, 39:1815-1831, 2010.
- F. X. Trias and R.W.C.P. Verstappen, "On the construction of discrete filters for symmetry-preserving regularization models", Computers & Fluids, 40:139-148, 2011.