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DNS of turbulent incompressible flows on MareNostrum

Main features of the DNS code:

Structured staggered grids

High-order
symmetry-preserving schemes

Fully-explicit second-order
time-integration method

Poisson solver for 2.5D
problems: FFT + PCG

Hybrid MPI+OpenMP
parallelization

Air-filled differentially heated cavity at Ra = 1011 (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)
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DNS of turbulent incompressible flows on MareNostrum

Wall-mounted cube at Re = 7240 (17M grid points)

Square cylinder at Re = 22000 (75M grid points)

Air-filled differentially heated cavity at Ra = 1011 (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)
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Scaling? Yes1, we can... but never enough

1A. Gorobets et al. “Hybrid MPI+OpenMP parallelization of an FFT-based 3D
Poisson solver with one periodic direction” Computers&Fluids, (accepted)
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Governing equations

Incompressible Navier-Stokes equations:

∇ · u = 0
∂tu + C(u, u) = D(u)−∇p

where the nonlinear convective term is given by

C(u, φ) = (u · ∇)φ

and the linear dissipative term is given by

D(φ) = ν∆φ

23th International Conference on Parallel Computational Fluid Dynamics 2011
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Regularization modeling

As the full energy spectrum cannot be computed, a dynamically less
complex mathematical formulation is sought. We consider smooth
approximations (regularizations) of the nonlinearity,

∂tuε + C̃(uε, uε) = D(uε)−∇pε

such approximations may fall in the Large-Eddy Simulation (LES)
concept,

∂t ūε + C(ūε, ūε) = D(ūε)−∇p̄ε +M1(ūε, ūε)

if the filter is invertible:

M1(ūε, ūε) = C(ūε, ūε)− C̃(uε, uε)
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Previous regularization modelings
Leray and Navier-Stokes-α models

The regularization methods basically alters the convective term to
restrain the production of small scales of motion.

Leray model:

∂tuε + C(ūε, uε) = D(uε)−∇pε
Navier-Stokes-α model:

∂tuε + Cr (uε, ūε) = D(uε)−∇πε
where the π = p + u2/2 and the convective operator in rotational
form is defined as Cr (u, v) = (∇× u)× v

However, in doing so some of the inviscid invariants (kinetic energy,
enstrophy in 2D and helicity in 3D) are not conserved.

23th International Conference on Parallel Computational Fluid Dynamics 2011
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Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

Kinetic energy : (u, u)

Enstrophy (in 2D) : (ω, ω)

Helicity (in 3D) : (ω, u)

where (a, b) =
∫

Ω a · bdΩ and ω = ∇× u; the approximate convective
operator must be skew-symmetric:

(
C̃(u, φ1), φ2

)
= −

(
C̃(u, φ2), φ1

)
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Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations2,

∂tuε + Cn(uε, uε) = D(uε)−∇pε
in which the convective term in smoothed according to:

C2(u, φ) = C(ū, φ̄)

C4(u, φ) = C(ū, φ̄) + C(ū, φ′) + C(u′, φ̄)

C6(u, φ) = C(ū, φ̄) + C(ū, φ′) + C(u′, φ̄) + C(u′, φ′)

where u′ = u − ū and Cn(u, φ) = C(u, φ) +O(εn) for any symmetric
filter.

2Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008
23th International Conference on Parallel Computational Fluid Dynamics 2011
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Discretizing the Cn regularization modeling

The regularizations Cn are constructed in a way that the symmetry
properties are exactly preserved.

Of course, the same should hold for the numerical approximations.

For this the basic ingredients are twofold:

A symmetry-preserving spatial discretization of the original NS
equations.

A normalized self-adjoint linear filter.
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Symmetry-preserving discretization of NS equations
The spatially discrete incompressible Navier-Stokes equations read

Ωs
dus
dt + C (us)us = Dus −ΩsGpc ; Mus = 0c

Symmetries of underlying continuous operators must be preserved!

C = −CT −→ uT
s Cus = 0 and λC ∈ I

no false dissipation, only transport!

D = DT def− −→ uT
s Dus < 0 and Dûk = λDûk , λD ∈ R−

pure diffusion, no transport!

−ΩsG = MT −→ −uT
s ΩsGpc = 0

no contribution to total kinetic energy!

to preserve the continuous inviscid invariants in a discrete sense.
23th International Conference on Parallel Computational Fluid Dynamics 2011
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Discrete filtering
Basic properties

us = Fus

Four properties are required:

i) Symmetry, ΩsF = (ΩsF )T

ii) Mus = 0c −→ MFus = 0c

iii) Normalization, F1 = 1

iv) ... and of course, it must effectively damp the high-frequency
components. But, how much?

23th International Conference on Parallel Computational Fluid Dynamics 2011
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Stopping the vortex-stretching3

Taking the curl of momentum equation the vorticity transport equation
follows

∂tω + C (u, ω) = C (ω, u) +D(ω)

Let us now consider an arbitrary part of the flow domain, Ω, with periodic
boundary conditions. Then, taking the L2 innerproduct with ω = ∇× u
leads to the enstrophy equation

1
2

d
dt (ω, ω) = (ω, C(ω, u)) − ν (∇ω,∇ω)

where (a, b) =
∫

Ω a · bdΩ. Unless, the grid is fine enough convection
dominates diffusion

(ω, C(ω, u)) > ν (∇ω,∇ω)

3F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
23th International Conference on Parallel Computational Fluid Dynamics 2011
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Stopping the vortex-stretching
The vortex-stretching term can be expressed in terms of the invariant
r = −1/3tr(S3)

(ω, C(ω, u)) = 4
∫

Ω
rdΩ (1)

whereas the L2(Ω)-norm of ω in terms of the invariant q = −1/2tr(S2)

(ω, ω) = −4
∫

Ω
qdΩ

Then, the diffusive term can be bounded by

ν (∇ω,∇ω) = −ν (ω,∆ω) ≤ −νλ∆(ω, ω) = 4νλ∆

∫
Ω

qdΩ (2)

where λ∆ < 0 is the largest (smallest in absolute value) non-zero
eigenvalue of Laplacian operator ∆ on Ω. If we now consider that the
domain is a periodic box of volume h, then λ∆ = −(π/h)2.

23th International Conference on Parallel Computational Fluid Dynamics 2011
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Stopping the vortex stretching
=⇒ In the present work we determine the filter width ε from

(ω, C4(ω, u)) ≈ f4(ĝk(ε))(ω, C(ω, u)) ≤ ν (∇ω,∇ω)

Then, recalling identity (1) and inequality (2), we propose to rewrite the
previous inequality in terms of the invariants q and r

f4(ĝk) = min
{
νλ∆

q
r+
, 1
}

with r+ = max(r , 0)

Notice that q < 0 (dissipation) whereas r can be either positive or
negative.

Switches off (f4 = 1) for: laminar (r → 0), 2D flows (r = 0) and for
fine enough meshes, |νλ∆q/r | ≥ 1.
Consistent near-wall behavior r ∝ y3 and q ∝ y0.
Consistent with the preferential vorticity alignment with the
intermediate eigenvector, λ2 (experimentally observed)

23th International Conference on Parallel Computational Fluid Dynamics 2011
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Test-case: Differentially Heated Cavity

Boundary conditions:

Isothermal vertical walls
Adiabatic horizontal walls
Periodic boundary conditions
in the spanwise direction

Dimensionless governing numbers:

Ra = β∆TL3
zg/(αν)

Pr = ν/α

Height aspect ratio Az = Lz/Ly

Depth aspect ratio Ax = Lx/Ly

23th International Conference on Parallel Computational Fluid Dynamics 2011
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DNS4,5 results for Ra = 1011, Pr = 0.71
Some details about DNS:

Mesh size: 128× 682× 1278
≈ 3 months - 256 CPUs
4th-order symmetry-preserving scheme
Az = 4

Complexity of the flow:

Boundary layers
Stratified cavity core
Internal waves
Recirculation areas

4F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:665-673, 2010
5F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:674-683, 2010
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Results for differentially heated cavity at Ra = 1011

Regularization model C4 is tested.
Two coarse meshes are considered

DNS RM1 RM2
Nx 128 12 8
Ny 682 45 30
Nz 1278 85 56

The discrete linear filter6 is based on polynomial functions of the
discrete diffusive operator, D

6F.X. Trias and R.W.C.P. Verstappen, Computers & Fluids, 40:139-148, 2011
23th International Conference on Parallel Computational Fluid Dynamics 2011
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Results for differentially heated cavity at Ra = 1011

Profiles

Averaged vertical velocity and temperature profiles at the horizontal mid-height
plane.

23th International Conference on Parallel Computational Fluid Dynamics 2011
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How does the parameter-free C̃4 regularization modeling
behave for other grids and Ra-numbers?

Averaged vertical velocity and temperature profiles at the horizontal mid-height
plane at Ra = 1010.

Even for a very coarse 8× 13× 30 grid reasonable results are obtained!

=⇒ Results for different grids show the robustness of the method.
23th International Conference on Parallel Computational Fluid Dynamics 2011
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Challenging C4: mesh independence analysis

The overall Nusselt number and the centerline stratification for 50 randomly
generated coarse grids with fixed stretching at Ra = 1010.

8 ≤ Nx ≤ 16, 17 ≤ Ny ≤ 34, and 40 ≤ Nz ≤ 80.
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Performance at very high Rayleigh numbers

Meshes have been generated with the criteria of keeping the same number of
points in the BL than for Ra = 1010.
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Conclusions and Future Research

The results shown illustrate the potential of the conservative
parameter-free C̃4 smoothing as a new simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

Robustnest. As the smoothed governing equations preserve the
symmetry properties of the original NS equations the solution cannot
blow up (in the energy-norm, in 2D also: enstrophy-norm). It seems
that even for very coarse meshes reasonably results can be obtained.
Universality. No ad hoc phenomenological arguments that cannot be
formally derived for the NS equations are used.
The proposed method constitutes a parameter-free turbulence
model.
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Thank you for you attention
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Further reading about C4 regularization

Roel Verstappen, “On restraining the production of small scales of
motion in a turbulent channel flow”, Computers & Fluids, 37 (7):
887-897, 2008

F. X. Trias et al., “Parameter-free symmetry-preserving regularization
modeling of a turbulent differentially heated cavity”, Computers &
Fluids, 39:1815-1831, 2010.

F. X. Trias and R.W.C.P. Verstappen, “On the construction of
discrete filters for symmetry-preserving regularization models”,
Computers & Fluids, 40:139-148, 2011.
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