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Governing equations

Incompressible Navier-Stokes equations:

∇ · u = 0
∂tu + C(u, u) = D(u)−∇p

where the nonlinear convective term is given by

C(u, φ) = (u · ∇)φ

and the linear dissipative term is given by

D(φ) = ν∆φ
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Regularization modeling

As the full energy spectrum cannot be computed, a dynamically less
complex mathematical formulation is sought. We consider smooth
approximations (regularizations) of the nonlinearity,

∂tuε + C̃(uε, uε) = D(uε)−∇pε

such approximations may fall in the Large-Eddy Simulation (LES)
concept,

∂t ūε + C(ūε, ūε) = D(ūε)−∇p̄ε +M1(ūε, ūε)

if the filter is invertible:

M1(ūε, ūε) = C(ūε, ūε)− C̃(uε, uε)
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Symmetry-preserving regularization models

In order to conserve the following inviscid invariants
Kinetic energy : (u, u)

Enstrophy (in 2D) : (ω, ω)

Helicity (in 3D) : (ω, u)

where (a, b) =
∫

Ω a · bdΩ and ω = ∇× u; the approximate convective
operator must preserve the basic symmetry properties:

(C(u, v), w) = − (C(u, w), v)

(C(u, v),∆v) = (C(u,∆v), v) in 2D
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Symmetry-preserving regularization models

Regularizations of the non-linear convectiver term can be constructed

C̃(u, v) =
1∑

i ,j,k=0
aĳk C̃ĳk(u, v)

where C̃ĳk(u, v) = ϕk (C(ϕi (u), ϕj(v))) and ϕi (u) =

{
u , if i = 0
u , if i = 1

(·) is a self-adjoint filter that commutes with differential operators.

Among all possible combinations we find the regularization proposed by
Leray, C(u, u) : a100 = 1 (with the rest of aĳk = 0)

=⇒ Eight coefficients aĳk need to be determined.
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Symmetry-preserving regularization models

C̃(u, v) =
1∑

i ,j,k=0
aĳk C̃ĳk(u, v)

1∑
i ,j,k=0

aĳk = 1 −→ C̃(u, v) = C(u, v) +O(εn) with n ≥ 2

(
C̃(u, v), w

)
= −

(
C̃(u, w), v

)
−→ aĳk = aikj(

C̃(u, v),∆v
)

=
(
C̃(u,∆v), v

)
in 2D −→ aĳk = akji

This leads to a family of O(ε2)-accurate regularizations. Among them1,

C2(u, v) = C̃111(u, v) = C(u, v)

1Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008
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Symmetry-preserving regularization models

To cancel second-order terms, three additional conditions need to imposed:

1∑
j,k=0

a1jk = 0
1∑

i ,k=0
ai1k = 0

1∑
i ,j=0

aĳ1 = 0

Cγ4 (u, v) =
1
2 ((C4 + C6) + γ(C4 −C6)) (u, v)

where C4 and C6 read

C4(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄)

C6(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄) + C(u′, v ′)
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Symmetry-preserving regularization models

Taking γ = 1 we obtain the C4 approximation1,

∂tuε + C4(uε, uε) = D(uε)−∇pε
in which the convective term in smoothed according to:

C4(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄)

where u′ = u − ū and C4(u, v) = C(u, v) +O(ε4) for any symmetric
filter.

High-frequencies need to be effectively damped.

But how much?

1Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008
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Stopping the vortex-stretching2

Taking the curl of momentum equation the vorticity transport equation
follows

∂tω + C (u, ω) = C (ω, u) +D(ω)

Let us now consider an arbitrary part of the flow domain, Ω, with periodic
boundary conditions. Then, taking the L2 innerproduct with ω = ∇× u
leads to the enstrophy equation

1
2

d
dt (ω, ω) = (ω, C(ω, u)) − ν (∇ω,∇ω)

where (a, b) =
∫

Ω a · bdΩ. Unless, the grid is fine enough convection
dominates diffusion

(ω, C(ω, u)) > ν (∇ω,∇ω)

2F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
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Stopping the vortex-stretching
The vortex-stretching term can be expressed in terms of the invariant
r = −1/3tr(S3)

(ω, C(ω, u)) = 4
∫

Ω
rdΩ (1)

whereas the L2(Ω)-norm of ω in terms of the invariant q = −1/2tr(S2)

(ω, ω) = −4
∫

Ω
qdΩ

Then, the diffusive term can be bounded by

ν (∇ω,∇ω) = −ν (ω,∆ω) ≤ −νλ∆(ω, ω) = 4νλ∆

∫
Ω

qdΩ (2)

where λ∆ < 0 is the largest (smallest in absolute value) non-zero
eigenvalue of Laplacian operator ∆ on Ω. If we now consider that the
domain is a periodic box of volume h, then λ∆ = −(π/h)2.
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Stopping the vortex stretching
=⇒ In the present work we determine the filter width ε from

(ω, C4(ω, u)) ≈ f4(ĝk(ε))(ω, C(ω, u)) ≤ ν (∇ω,∇ω)

Then, recalling identity (1) and inequality (2), we propose to rewrite the
previous inequality in terms of the invariants q and r

f4(ĝk) = min
{
νλ∆

q
r+
, 1
}

with r+ = max(r , 0)

Notice that q < 0 (dissipation) whereas r can be either positive or
negative.

Switches off (f4 = 1) for: laminar (r → 0), 2D flows (r = 0) and for
fine enough meshes, |νλ∆q/r | ≥ 1.
Consistent near-wall behavior r ∝ y3 and q ∝ y0.
Consistent with the preferential vorticity alignment with the
intermediate eigenvector, λ2 (experimentally observed)
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Test-case: Differentially Heated Cavity

Boundary conditions:

Isothermal vertical walls
Adiabatic horizontal walls
Periodic boundary conditions
in the spanwise direction

Dimensionless governing numbers:

Ra = β∆TL3
zg/(αν)

Pr = ν/α

Height aspect ratio Az = Lz/Ly

Depth aspect ratio Ax = Lx/Ly
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DNS3,4 results for Ra = 1011, Pr = 0.71
Some details about DNS:

Mesh size: 128× 682× 1278
≈ 3 months - 256 CPUs
4th-order symmetry-preserving scheme
Az = 4

Complexity of the flow:

Boundary layers
Stratified cavity core
Internal waves
Recirculation areas

3F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:665-673, 2010
4F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:674-683, 2010
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Results for differentially heated cavity at Ra = 1011

Regularization model C4 is tested.
Two coarse meshes are considered

DNS RM1 RM2
Nx 128 12 8
Ny 682 45 30
Nz 1278 85 56

The discrete linear filter5 is based on polynomial functions of the
discrete diffusive operator, D

5F.X. Trias and R.W.C.P. Verstappen, Computers & Fluids, 40:139-148, 2011
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Results for differentially heated cavity at Ra = 1011

Profiles

Averaged vertical velocity and temperature profiles at the horizontal mid-height
plane.
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How does the parameter-free C̃4 regularization modeling
behave for other grids and Ra-numbers?

Averaged vertical velocity and temperature profiles at the horizontal mid-height
plane at Ra = 1010.

Even for a very coarse 8× 13× 30 grid reasonable results are obtained!

=⇒ Results for different grids show the robustness of the method.
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Challenging C4: mesh independence analysis

The overall Nusselt number and the centerline stratification for 50 randomly
generated coarse grids with fixed stretching at Ra = 1010.

8 ≤ Nx ≤ 16, 17 ≤ Ny ≤ 34, and 40 ≤ Nz ≤ 80.
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Performance at very high Rayleigh numbers

Meshes have been generated with the criteria of keeping the same number of
points in the BL than for Ra = 1010.
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Conclusions and Future Research

The results illustrate the potential of C4 regularization as a
parameter-free turbulence model.
Robustnest. It preserves the symmetry properties and therefore, the
solution cannot blow up even for very coarse meshes.

Test the performance of other forms of Cγ4 regularization (with γ 6= 1).
Add some additional dissipation by (approximately) restoring the
Galilean invariance.

(∂t)γ4uε = ∂t(uε − 1/2(1 + γ)u′′ε ) = Gγ4 (∂tuε),

Since (Gγ4 )−1(φ) ≈ 2φ−Gγ4 (φ) +O(ε6), an energetically almost
equivalent set of equations can be derived

∂tuε + Cγ4 (uε, uε) = Dγ4uε −∇pε,

where Dγ4u = Du + 1/2(1 + γ)(Du′)′.
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Thank you for you attention
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Further reading about C4 regularization

Roel Verstappen, “On restraining the production of small scales of
motion in a turbulent channel flow”, Computers & Fluids, 37 (7):
887-897, 2008

F. X. Trias et al., “Parameter-free symmetry-preserving regularization
modeling of a turbulent differentially heated cavity”, Computers &
Fluids, 39:1815-1831, 2010.

F. X. Trias and R.W.C.P. Verstappen, “On the construction of
discrete filters for symmetry-preserving regularization models”,
Computers & Fluids, 40:139-148, 2011.
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