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Presentation outline

1. Introduction

• Problem definition: Wall-mounted cube in a channel flow

• Parallel fully-3D Poisson solver

• DNS results for Reh = 7235

• Governing equations

2. Regularization models for the simulation of turbulence

• Existing regularization: Leray and Navier-Stokes-α models

• Symmetry-preserving regularization models

• Mathematical foundation

• Discretizing the Cn regularization modelling

• Previous experience with C4 regularization modelling

3. Results for a Turbulent flow around a Wall-mounted Cube

• Description of cases

• Comparison with DNS results

4. Conclusions and Future Research
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Problem definition: Wall-mounted cube in a channel flow

Boundary conditions:

• Spanwise: Periodic BC

• Streamwise: prescribed inlet profile −→
• Non-slip BC on the channel walls and one the

surface of the cube (No IB method is used!!)

Dimensionless governing numbers:

• Reh = Ubulkh/ν = 7235 ...

• ...or Reτ = 590

U/uτ = min(y
+
, klny

+
+ B)

where y+ = (y/H)Reτ , uτ = Reτν/H

and H = 3h/2, k = 0.25, B = 5.0.
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Parallel fully-3D Poisson solver
A two-level Multigrid method

Algorithm on the i-th iteration:

1. Smoother: x3D
i ≈

`
A3D

´−1
b3D

• Locally preconditioned CG.
• Initial guess x3D

i−1

2. r3D
i = A3Dx3D

i − b3D

3. r2.5D
i = Qr3D

i

4. Error equation: z2.5D
i ≈

`
A2.5D

´−1
r2.5D
i

A 2.5D parallel Poisson solver is used

• FFT decompose A2.5D into a set of 2D systems:

Â2D
k ẑ2D

k = r̂2D
k

• ẑ2D
k ≈

“
Â2D
k

”−1

r̂2D
k with k = 1, · · · , Nx

A 2D parallel solver is used.

• Inverse FFT of ẑ2D
k gives z2.5D

i .

5. z3D
i = Pz2.5D

i

6. x3D
i+1 = x3D

i + z3D
i

Cartesian grid stretched in the 3

directions!!!
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Parallel fully-3D Poisson solver
Parallel performance

• Reh = 5000

• PCG: 15 iterations using Jacobi as preconditioner

• Most of the time is consumed solving A2.5Dz2.5D
i = r2.5D

i therefore number of MG iterations is a

good measure of how many times slower is the 3D solver respect the 2.5D
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DNS results at Reh = 7235

Some details about DNS simulation:

• Fully-3D Poisson solver

• Mesh size: 400× 200× 196 ≈ 16M

• Computing Time: ≈ 1 month - 300 CPUs

on MareNostrum supercomputer

• Symmetry-preserving discretization

Complexity of the flow:

• Vortical structures:

? horseshoe-type at the upstream face

? arc-shaped in the wake

• Flow separation

• Vortex shedding
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Verification of simulation

Y
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Verification of simulation
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Streamlines
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Governing equations

Incompressible Navier-Stokes equations

∂tu+ C(u, u) = PrD(u)−∇p+ f

∇ · u = 0

where the nonlinear convective term is given by

C(u, v) = (u · ∇)v

and the linear dissipative term is given by

D(u) =
1

Re
∇2
u
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Regularization modelling

As the full energy spectrum cannot be computed, a dynamically less complex mathematical
formulation is sought. We consider smooth approximations (regularizations) of the nonlinearity,

∂tuε + eC(uε, uε) = D(uε)−∇pε + f

such approximations may fall in the Large-Eddy Simulation (LES) concept,

∂tūε + C(ūε, ūε) = D(ūε)−∇p̄ε + f +M1(ūε, ūε)

if the filter is invertible:

M1(ūε, ūε) = C(ūε, ūε)− eC(uε, uε)
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Previous regularization modellings
Leray and Navier-Stokes-α models

The regularization methods basically alters the convective term to restrain the production of
small scales of motion.

• Leray model:

∂tuε + C(ūε, uε) = D(uε)−∇pε
• Navier-Stokes-α model:

∂tuε + Cr(uε, ūε) = D(uε)−∇πε
where the π = p+ u2/2 and the convetive operator in rotational form is defined as

Cr(u, v) = (∇× u)× v

However, in doing so some of the inviscid invariants (kinetic energy, enstrophy in 2D and helicity

in 3D) are not conserved.
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Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

• Kinetic energy R
Ω

u · udΩ

• Enstrophy (in 2D) R
Ω
(∇× u) · (∇× u)dΩ

• Helicity (in 3D) R
Ω
(∇× u) · udΩ

the approximate convective operator has to be skew-symmetric:

“eC(u, v), w
”

= −
“eC(u,w), v

”
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Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations,

∂tuε + Cn(uε, uε) = D(uε)−∇pε

in which the convective term in smoothened according to:

C2(u, v) = C(ū, v̄)

C4(u, v) = C(ū, v̄) + C(ū, v′) + C(u′, v̄)

C6(u, v) = C(ū, v̄) + C(ū, v′) + C(u′, v̄) + C(u′, v′)

where u′ = u− ū and Cn(u, v) = C(u, v) +O(εn) for any symmetric filter.
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Mathematical foundation

Energy flux equation for the symmetry-preserving regularization resembles the NS

1

2

d

dt
|ukk′|

2
+ ν |∇ukk′|

2
= eTk − eTk′ −→ ν < |∇ukk′|

2
>=< eTk > − < eTk′ >

=⇒ Following the same steps as Foias et al.
(2001)

• < eTk > is a nonnegative, monotone

decreasing function.

• < eTk > is approximately constant for

ka < k < kb (existence of inertial range).

=⇒ −5/3 scaling !!!
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LES-interpretation of C4-regularization

∂tūε + C(ūε, ūε)−D(ūε) +∇p̄ε =

C(ūε, ūε)− C4(uε, uε) =

−
ε2

12
∇ · (∇ūε : ∇ūε) + O(ε

4
)

gradient model + stabilization
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Discretizing the Cn regularization modelling

• The discretization is also a regularization. The spatial discretization method preserves the

symmetry and conservation properties too

Ωs

dus

dt
+ C (us)us + Dus + ΩsGpc = 0s with C (us) = −C

∗
(us)

and is therefore well-suited to test the proposed regularization model.

• A normalized self-adjoint filter has been chosen. In 1D it becomes

φi =
ε4 − 4ε2

1152
(φi+2 + φi−2) +

16ε2 − ε4

288
(φi+1 + φi−1) +

ε4 − 20ε2 + 192

192
φi

Thus, only one parameter needs to be prescribed: the local filter length ε !!!
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Parameter-free approach
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Parameter-free approach

The vortex-stretching and dissipation term contributions to (1/|ω|2)∂t|ω|2 are given by

ω · C (ω, u)

ω · ω
=
ω · S (u)ω

ω · ω
and

1

Re

∇ω : ∇ω
ω · ω

At the smallest grid scale, k = π/h, convection may dominate diffusion

ωk · C (ω, u)k
ωk · ωk

>
1

Re
k

2

=⇒ In the present work we determine the filter width ε from

ωk · C4 (ω, u)k
ωk · ωk

≈
1

Re
k

2
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Parameter-free approach

Note that C4 (u, v) depends on the filter length ε. For the smallest scale this dependence becomes

ωk · C4 (ω, u)k
ωk · ωk

≈ f4 (ĝk(ε))
ωk · S (u)ωk

ωk · ωk
≤ f4 (ĝk(ε))λmax (S)

where 0 < ĝk(ε) ≤ 1 is the transfer function of the filter and the damping function 0 < f4 ≤ 1.

=⇒ Therefore, it suffices that following inequality be locally hold

f4 (ĝk(ε)) ≤
1

Re

k2

λmax (S)
−→ ε

to guarantee that the production of smaller scales of motion be stopped at the smallest scale
set by the mesh.
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Previous experience with the parameter-free C4-regularization
Turbulence flow in a differentially heated cavity

Some details about DNS simulations:

• Mesh size: 128× 682× 1278

• Computing Time: ≈ 3 months - 256 CPUs

• 4th-order symmetry-preserving discretization

• Az = 4

Complexity of the flow:

• Boundary layers

• Stratified cavity core

• Internal waves

• Recirculation areas
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Previous experience with the parameter-free C4-regularization
Turbulence flow in a differentially heated cavity at Ra = 1010

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane.
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Previous experience with the parameter-free C4-regularization
Turbulence flow in a differentially heated cavity at Ra = 1011

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane.
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A challenging test: mesh independence analysis at very coarse grids

The overall Nusselt number and the centerline stratification for 50 randomly generated coarse grids

for the DHC problem at Ra = 1010. 8 ≤ Nx ≤ 16, 17 ≤ Ny ≤ 34, and 40 ≤ Nz ≤ 80.
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Results for the flow around the wall-mounted cube at Reh = 7235

• Parameter-free C4-regularization model is tested.

• Two coarse meshes are considered

DNS MeshA MeshB

Nx 400 40 50

Ny 196 20 26

Nz 200 20 25

• Coarse meshes MeshA and MeshB keep the same grid points distribution of the DNS but with

much less spatial resolutions.
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Results for the flow around the wall-mounted cube at Reh = 7235
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Results for the flow around the wall-mounted cube at Reh = 7235
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Conclusions and Future Research

The results shown illustrate the potential of the conservative parameter-free eC4 smoothing as a new

simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

• Robustnest. As the smoothed governing equations preserve the symmetry properties of the

original Navier-Stokes equations the solution cannot blow up (in the energy-norm, in 2D also:

enstrophy-norm). It seems that even for very coarse meshes reasonably results can be obtained.

• Universality. No ad hoc phenomenological arguments that can not be formally derived for the

Navier-Stokes equations are used.

• The proposed method constitutes a parameter-free turbulence model.

Since now, the method has been successfully tested on completely different turbulent configurations

such as:

• Channel flow.

• Differentially heated cavity at different Ra-numbers.

• A plane impinging jet.

• Flow around a wall-mounted cube.
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Thank you for you attention
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