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Introduction

Rayleigh-Bénard convection (RBC)

@ Definition: a convective cell heated from below and cooled from above.

@ Flow dynamics are characterized by:

Rayleigh number: Prandtl number:
goaH3AT pr=" cell aspect ratio I'.
Ra==>— — P
VK
@ system respond
Nu— wT — k0T /0z
KAT/H

@ Different flow behaviour between the near-isothermal walls and the bulk that is
connected by the thermal plumes [Chilld & Schumacher, Eur. J. Phys. 2012]

—— W
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Direct numerical simulation Problem parameters and resolution requirements

Fine-scale features of thermal and kinetic energy dissipation rates

Non-dimensional governing equations: rameters

Viu =0, e Ra=108, Pr=0.7,
Otu+C(u,u) = —Vp+Du+f, rectangular cell of [ =1 and
L=mH.
HrT+C(u,T) = PriDT o _
@ Periodic boundaries at L
direction.

- C(u,u) = (u-V)u is the convective term.
- Du = (Pr/Ra)}/?>V?u is the diffusive term.
- £=(0,0,T) is the body forces term.

@ 4th_order symmetry-preserving spatial
discretizations [Verstappen & Veldman, J.
Comp. Phys. 2003].

@ Adiabatic side walls.
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Direct numerical simulation Problem parameters and resolution requirements

Fine-scale features of thermal and kinetic energy dissipation rates
Non-dimensional governing equations:
Viu =0, ® Ra=10%, Pr=0.,
Otu+C(u,u) = —Vp+Du+f, rectangular cell of [ =1 and
- L=mH.
& T+C(u,T) = Pr'DT o _
@ Periodic boundaries at L
direction.

- C(u,u) = (u-V)u is the convective term. o Adiabatic side walls
- Du = (Pr/Ra)}/?>V?u is the diffusive term.

Grétzbach criterion [Grétzbach, J.

- £=(0,0,T) is the body forces term. Comp. Phys. 1983]

@ 4th_order symmetry-preserving spatial
discretizations [Verstappen & Veldman, J.

maximum cell size

Pr2 1/4
Comp. Phys. 2003]. Nevs < 7r< i ) Pr<1
(Nu—1)Ra
Global heat flux Nuy = 1+ (RaPr)Y/2(wT)y ; 1/4
ref. ratio=Alj max/MGrs- NGro < T (m> Pr>1

ref. ratio Ny x Ny x N:  Nu_ Nuy/Nu ((e)v)t(}?apr)”z +1)/Nu ((eT)V,t(RaPr)l/Q)/Nu

11 256 x 150 x 150 31.44  0.997 0.966 0.983
1.0 288 x 158 x 158 31.10  0.997 0.971 0.985
0.9 320 x 174 x 174 31.00  0.999 0.976 0.988
08 342 % 192 % 192 30.93  0.999 0.982 0.991
0.7 400 x 208 x 208 30.86  1.001 0.984 0.993
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Direct numerical simulation Problem parameters and resolution requirements

Fine-scale features of thermal and kinetic energy dissipation rates

e(x,t) = (Pr/Ra)"2(Vu+Vu')? and  er(x,t) = (RaPr) Y2(VT)?

@ € and et are highly correlated through BLs and tend to decorrelate in the
bulk when the plumes are shedded and well mixed.

log(ez) log(e)
£ O 2 2 R ATERRITE . ARRRRRR 0
E i

-8.256824 0.8034676 6791613 0.1545709

(a) (b)

Figure: Snapshot of kinetic € and thermal et dissipation rates.
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Direct numerical simulation 2 em parameters and resolution re

Fine-scale features of thermal and kinetic energy dissipation rates
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Spatial PDF of normalized dissipation
rates through the whole cavity (a)
and the bulk (b).

Normalized joint statistics M(¢,¢7) in
the bulk region that shows the
correlation of (e,e1) at the rare
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their averaged values.
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Direct numerical simulation Problem parameters and resolution requirements
Fine-scale features of thermal and kinetic energy dissipation rates

High correlation of (e,e7) at the strong kinetic-thermal interactions that associate
with the role of thermal plumes in feeding the momentum through the bulk.

@ 1St-order gradient
similarity of (e, eT)
s(G,GT) = sm"sq,
G =Ve, G =Ver.

@ Magnitude similarity

_g_lGl-liGrl
(reli+nerin?

m

@ Direction similarity

. ( G -Gt )2
RN T AT
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Cy-regularization
; ts

Turbulence modeling d dynamics of fine-scale motions

@ DNS is not feasible at high Ra number.

@ Symmetry-preserving regularizations on the convective non-linearity that restrain
the production of the smallest scales of motion, proposed by Verstappen
[Verstappen, Comp. & Fluids, 2008]

GE
@ DNS resolved equation: 0.1 .
8fu+c(u9u):7vP+Du+f 0.01
@ Alerted non-linearity equation: r:: 0.001
=)
2
Orue +C4(U67Us):_vps +Du. +fe o 0001
@ O(e*)-accurate smooth s ;‘17
approximation is given: 3
—_ P y————r =7 7 — le-06
Ca(u,v) =C(u,v)+C(u,v')+C(v',V) : e
x
u’ = u—u the residual of the filtered
field u Figure: One-dimensional spanwise energy spectra
at y =0.5.
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Cy-regularization
Jeraged re

ed res

" Avera
Turbulence modelin, -
e Structure and dynamics of fine-scale motions

@ DNS is not feasible at high Ra number.

@ Symmetry-preserving regularizations on the convective non-linearity that restrain
the production of the smallest scales of motion, proposed by Verstappen
[Verstappen, Comp. & Fluids, 2008]

GE
@ DNS resolved equation: 0.1 .
8fu+c(u9u):7vP+Du+f 0.01
@ Alerted non-linearity equation: r:: 0.001
=)
2
Otue +Ca(uc,u.) = —Vp.+Du. +f. o ooos
@ O(e*)-accurate smooth s ;‘17
approximation is given: 3
—_ P y————r =7 7 — le-06
Ca(u,v) =C(u,v)+C(u,v’')+C(u', V) 1 e
x
u’ = u—u the residual of the filtered
field u Figure: One-dimensional spanwise energy spectra

at y =0.5.

@ The low modes of u. approximate the corresponding low modes u, whereas the
high modes vanish faster than u.

@ Kinetic energy, enstrophy in 2D and helicity in 3D are exactly preserved leading
to an inevitable pile-up energy at the intermediate scales.
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C4-regularizatiol

. Averaged re 3
Turbulence modeling ; of fin o .
° dynamics of fine-scale motions

@ Very good assessment of the regularization modeling results with DNS is found
in channel flow [Verstappen, Comp. & Fluids, 2008] and differentially heated
cavity [F.X. Trias, Int. J. Heat Mass Transfer, 2013]
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Turbulence modeling

@ Very good assessment of the regularization modeling results with DNS is found
in channel flow [Verstappen, Comp. & Fluids, 2008] and differentially heated
cavity [F.X. Trias, Int. J. Heat Mass Transfer, 2013]

@ Linear filters based on polynomial functions of the discrete diffusive operator
M
F=I+) dnD™ with B=—(Pr/Ra)""/2071D
m=1

@ Filter length is decided from the requirements of stopping the vortex-stretching
mechanism at the smallest scales.

Ra[Rs|’

Aalargest negative non-zero eigenvalue of the Laplacian operator A

/w~5w

Q

—/w-Aw < 4
Q

P
damping function f3 = min{)\A e 1}

RsdQ S=1/2(Vu+ Vut)

/Q Qs = —1/2tr(S?)
/

4

Rs = —1/3tr(S%) =
Aa Qsdf —det(S)
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Cy-regularization
Averaged results

Turbulence modeling Structure and dynamics of fine-scale motions

DNS Mesh A Mesh B
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Figure: Temperature variance (T’ T’) (a), and averaged turbulent kinetic energy (k") (b)

@ Weaker modeling resolution at very coarse grids but better performance at finer
ones returned to the plumes dynamics at this moderate Ra number.
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Turbulence modeling

@ The universal inclined teardrop shape of the joint PDF map of the invariants
(Q, R) of velocity gradient tensor, is found in RBC in the bulk region.
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Cy-regularization

Turbulence modelin, Algigecdlicstlts
g Structure and dynamics of fine-scale motions
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Conclusions

A complete DNS study of RBC have done at Ra = 108 in rectangular cell
using energy-conserving discretizations to show a good agreement with
[M. Kaczorowiski & Wagner, J. Fluid Mech, 2009]

Fine-scales structure of thermal and kinetic energy dissipation rates are
correlated at the strong thermal-kinetic interactions related with the
evolution of thermal plumes.

Symmetry-preserving regularization models reduce effectively the
convective production of the smallest scales at high turbulent RBC when
the turbulent background dominates the thermal plumes.

Ongoing DNS at Ra = 100 to assess the good regularization modeling at
coarser grids.
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Thanks for
your attention!
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