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Rayleigh-Bénard convection (RBC)

Definition: a convective cell heated from below and cooled from above.
Flow dynamics are characterized by:

Rayleigh number:

Ra =
gαH3∆T

νκ

Prandtl number:

Pr =
ν

κ

cell aspect ratio Γ.

system respond

Nu =
wT −κ∂T/∂z

κ∆T/H
Different flow behaviour between the near-isothermal walls and the bulk that is
connected by the thermal plumes [Chillá & Schumacher, Eur. J. Phys. 2012]

T

T+ΔT

H

L

g

Γ=W/H

W

F. Dabbagh F. X. Trias A. Gorobets and A. Oliva Spectrally-consistent regularization of turbulent Rayleigh-Bénard convection



Introduction
Direct numerical simulation

Turbulence modeling
Conclusions

Problem parameters and resolution requirements
Fine-scale features of thermal and kinetic energy dissipation rates

Non-dimensional governing equations:
∇·u = 0 ,

∂tu +C(u,u) = −∇p+Du + f ,
∂tT +C(u,T ) = Pr−1DT

- C(u,u) = (u ·∇)u is the convective term.
- Du = (Pr/Ra)1/2∇2u is the diffusive term.
- f = (0,0,T ) is the body forces term.
4th-order symmetry-preserving spatial
discretizations [Verstappen & Veldman, J.
Comp. Phys. 2003].

Global heat flux NuV = 1+ (RaPr)1/2〈wT 〉V ,t
ref. ratio=∆li,max/ηGrö.

Parameters

Ra = 108, Pr = 0.7,
rectangular cell of Γ = 1 and
L = πH.
Periodic boundaries at L
direction.
Adiabatic side walls.

Grötzbach criterion [Grötzbach, J.
Comp. Phys. 1983]

maximum cell size

ηGrö ≤ π
( Pr2

(Nu−1)Ra

)1/4
,Pr ≤ 1

ηGrö ≤ π
( 1

(Nu−1)Ra

)1/4
,Pr > 1
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ε(x, t) = (Pr/Ra)1/2(∇u +∇ut)2 and εT (x, t) = (RaPr)−1/2(∇T )2

ε and εT are highly correlated through BLs and tend to decorrelate in the
bulk when the plumes are shedded and well mixed.

(a) (b)

Figure: Snapshot of kinetic ε and thermal εT dissipation rates.
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- Spatial PDF of normalized dissipation
rates through the whole cavity (a)
and the bulk (b).

- Normalized joint statistics Π(ζ,ζT ) in
the bulk region that shows the
correlation of (ε,εT ) at the rare
high-magnitude events exceeding
their averaged values.
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High correlation of (ε,εT ) at the strong kinetic-thermal interactions that associate
with the role of thermal plumes in feeding the momentum through the bulk.

1st -order gradient
similarity of (ε,εT )
s(G,GT ) = sm · sd ,
G =∇ε, GT =∇εT .
Magnitude similarity

sm = 4
‖G‖ · ‖GT ‖

(‖G‖+‖GT ‖)2

Direction similarity

sd =

( G ·GT
‖G‖ · ‖GT ‖

)2
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DNS is not feasible at high Ra number.
Symmetry-preserving regularizations on the convective non-linearity that restrain
the production of the smallest scales of motion, proposed by Verstappen
[Verstappen, Comp. & Fluids, 2008]

DNS resolved equation:

∂tu +C(u,u) =−∇p +Du + f

Alerted non-linearity equation:

∂tuε +C4(uε,uε) =−∇pε +Duε + f ε

O(ε4)-accurate smooth
approximation is given:

C4(u,v) = C(u,v) +C(u,v ′) +C(u′,v)

u′ = u−u the residual of the filtered
field u Figure: One-dimensional spanwise energy spectra

at y = 0.5.

The low modes of uε approximate the corresponding low modes u, whereas the
high modes vanish faster than u.
Kinetic energy, enstrophy in 2D and helicity in 3D are exactly preserved leading
to an inevitable pile-up energy at the intermediate scales.
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Very good assessment of the regularization modeling results with DNS is found
in channel flow [Verstappen, Comp. & Fluids, 2008] and differentially heated
cavity [F.X. Trias, Int. J. Heat Mass Transfer, 2013]

Linear filters based on polynomial functions of the discrete diffusive operator

F = I +

M∑
m=1

dmD̃m with D̃ =−(Pr/Ra)−1/2Ω−1D

Filter length is decided from the requirements of stopping the vortex-stretching
mechanism at the smallest scales.

damping function f4 = min
{
λ∆

√
Pr
Ra

Qs
|Rs |

,1
}

λ∆largest negative non-zero eigenvalue of the Laplacian operator ∆∫
Ω

ω ·Sω = 4
∫

Ω

RsdΩ

−
∫

Ω

ω ·∆ω ≤ 4
∫

Ω

λ∆QsdΩ

S = 1/2(∇u +∇ut )
Qs =−1/2tr(S2)
Rs =−1/3tr(S3) =
−det(S)
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Figure: Temperature variance 〈T ′T ′〉 (a), and averaged turbulent kinetic energy 〈k′〉 (b)

Weaker modeling resolution at very coarse grids but better performance at finer
ones returned to the plumes dynamics at this moderate Ra number.
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The universal inclined teardrop shape of the joint PDF map of the invariants
(Q,R) of velocity gradient tensor, is found in RBC in the bulk region.

(a) DNS (b) model(mesh B) (c) no model(mesh B)

(d) DNS (e) model(mesh B) (f) no model(mesh B)
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(g) DNS (h) model(mesh B) (i) no model(mesh B)
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A complete DNS study of RBC have done at Ra = 108 in rectangular cell
using energy-conserving discretizations to show a good agreement with
[M. Kaczorowiski & Wagner, J. Fluid Mech, 2009]
Fine-scales structure of thermal and kinetic energy dissipation rates are
correlated at the strong thermal-kinetic interactions related with the
evolution of thermal plumes.
Symmetry-preserving regularization models reduce effectively the
convective production of the smallest scales at high turbulent RBC when
the turbulent background dominates the thermal plumes.
Ongoing DNS at Ra = 1010 to assess the good regularization modeling at
coarser grids.
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