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Presentation outline

1. Introduction

• Problem definition: Differentially Heated Cavity

• DNS results for Ra = 1011, Pr = 0.71

• Governing equations

2. Regularization models for the simulation of turbulence

• Existing regularization: Leray and Navier-Stokes-α models

• Symmetry-preserving regularization models

• Mathematical foundation

• Discretizing the Cn regularization modelling

3. Results for a Differentially Heated Cavity

• Description of cases

• Initial test: trial-and-error

• Parameter-free approach

? Comparison with convergence studies

? Mean fields

4. Conclusions and Future Research
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Problem definition: Differentially Heated Cavity
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Boundary conditions:

• Isothermal vertical walls

• Adiabatic horizontal walls

• Periodic boundary conditions in the x-

direction, orthogonal to the main flow

Dimensionless governing numbers:

• Raz =
β∆TL3

zg
αν

• Pr = ν
α

• Height aspect ratio Az = Lz
Ly

• Depth aspect ratio Ax = Lx
Ly
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DNS results for Ra = 1011, Pr = 0.71

Some details about DNS simulations:

• Mesh size: 128× 682× 1278

• Computing Time: ≈ 3 months - 256 CPUs

• 4th-order symmetry-preserving discretization

• Az = 4

Complexity of the flow:

• Boundary layers

• Stratified cavity core

• Internal waves

• Recirculation areas
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Governing equations

Incompressible Navier-Stokes coupled with energy transport equation:

∇ · u = 0

∂tu+ C(u, u) = PrD(u)−∇p+ f

∂tT + C(u, T ) = D(T )

where f = (0, 0, RaPrT ) (Boussinesq approximation) and the nonlinear convective term is given

by

C(u, v) = (u · ∇)v

and the linear dissipative term is given by

D(u) =
1

Ra0.5
∇2
u
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Regularization modelling

As the full energy spectrum cannot be computed, a dynamically less complex mathematical
formulation is sought. We consider smooth approximations (regularizations) of the nonlinearity,

∂tuε + eC(uε, uε) = PrD(uε)−∇pε + f

∂tTε + eC(uε, Tε) = D(Tε)

such approximations may fall in the Large-Eddy Simulation (LES) concept,

∂tūε + C(ūε, ūε) = PrD(ūε)−∇p̄ε + f +M1(ūε, ūε)

∂tT ε + C(ūε, T ε) = D(T ε) +M2(ūε, T ε)

if the filter is invertible:

M1(ūε, ūε) = C(ūε, ūε)− eC(uε, uε)

M2(ūε, T ε) = C(ūε, T ε)− eC(uε, Tε)
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Previous regularization modellings
Leray and Navier-Stokes-α models

The regularization methods basically alters the convective term to restrain the production of
small scales of motion.

• Leray model:

∂tuε + C(ūε, uε) = D(uε)−∇pε
• Navier-Stokes-α model:

∂tuε + Cr(uε, ūε) = D(uε)−∇πε
where the π = p+ u2/2 and the convective operator in rotational form is defined as

Cr(u, v) = (∇× u)× v

However, in doing so some of the inviscid invariants (kinetic energy, enstrophy in 2D and helicity

in 3D) are not conserved.
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Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

• Kinetic energy R
Ω

u · udΩ

• Enstrophy (in 2D) R
Ω
(∇× u) · (∇× u)dΩ

• Helicity (in 3D) R
Ω
(∇× u) · udΩ

the approximate convective operator has to be skew-symmetric:

“eC(u, v), w
”

= −
“eC(u,w), v

”
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Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations,

∂tuε + Cn(uε, uε) = D(uε)−∇pε

in which the convective term in smoothened according to:

C2(u, v) = C(ū, v̄)

C4(u, v) = C(ū, v̄) + C(ū, v′) + C(u′, v̄)

C6(u, v) = C(ū, v̄) + C(ū, v′) + C(u′, v̄) + C(u′, v′)

where u′ = u− ū and Cn(u, v) = C(u, v) +O(εn) for any symmetric filter.
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Mathematical foundation

Energy flux equation for the symmetry-preserving regularization resembles the NS

1

2

d

dt
|ukk′|

2
+ ν |∇ukk′|

2
= eTk − eTk′ −→ ν < |∇ukk′|

2
>=< eTk > − < eTk′ >

=⇒ Following the same steps as Foias et al.
(2001)

• < eTk > is a nonnegative, monotone

decreasing function.

• < eTk > is approximately constant for

ka < k < kb (existence of inertial range).

=⇒ −5/3 scaling !!!
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LES-interpretation of C4-regularization

∂tūε + C(ūε, ūε)−D(ūε) +∇p̄ε =

C(ūε, ūε)− C4(uε, uε) =

−
ε2

12
∇ · (∇ūε : ∇ūε) + O(ε

4
)

gradient model + stabilization
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Discretizing the Cn regularization modelling

• The discretization is also a regularization. The spatial discretization method preserves the

symmetry and conservation properties too

Ωs

dus

dt
+ C (us)us + Dus + ΩsGpc = 0s with C (us) = −C

∗
(us)

and is therefore well-suited to test the proposed regularization model.

• A normalized self-adjoint filter has been chosen. In 1D it becomes

φi =
ε4 − 4ε2

1152
(φi+2 + φi−2) +

16ε2 − ε4

288
(φi+1 + φi−1) +

ε4 − 20ε2 + 192

192
φi
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Results for differentially heated cavity at Ra = 1011

• Regularization model C4 is tested.

• Two coarse meshes are considered

DNS RM1 RM2

Nx 128 12 8

Ny 682 45 30

Nz 1278 85 56

∆xmin 3.79× 10−3 4.16× 10−2 6.25× 10−2

∆ymin 2.16× 10−4 3.27× 10−3 4.91× 10−3

∆zmin 3.13× 10−3 4.71× 10−2 7.14× 10−2

• Initial test: ratio ε/h (filter length to the average grid width) is kept constant in all three spatial

directions.
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Results for differentially heated cavity at Ra = 1011

Convergence studies

wmax Nusselt

The maximum of the averaged vertical velocity at the horizontal mid-height plane and the overall averaged Nusselt

number as a function of the ratio of the filter length ε to the average grid width h.

=⇒ A weak dependance for sufficiently large values of ε is observed
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Same behaviour has also been observed at different Ra-numbers!
Convergence studies at Ra = 1010

wmax Nusselt

The maximum of the averaged vertical velocity at the horizontal mid-height plane and the overall averaged Nusselt

number as a function of the ratio of the filter length ε to the average grid width h.

=⇒ A weak dependance for sufficiently large values of ε is observed
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Parameter-free approach

A

B

C
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Parameter-free approach

The vortex-stretching and dissipation term contributions to (1/|ω|2)∂t|ω|2 are given by

ω · C (ω, u)

ω · ω
=
ω · S (u)ω

ω · ω
and

1

Re

∇ω : ∇ω
ω · ω

At the smallest grid scale, k = π/h, convection may dominate diffusion

ωk · C (ω, u)k
ωk · ωk

>
1

Re
k

2

=⇒ In the present work we determine the filter width ε from

ωk · C4 (ω, u)k
ωk · ωk

≈
1

Re
k

2
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Parameter-free approach

Note that C4 (u, v) depends on the filter length ε. For the smallest scale this dependence becomes

ωk · C4 (ω, u)k
ωk · ωk

≈ f4 (ĝk(ε))
ωk · S (u)ωk

ωk · ωk
≤ f4 (ĝk(ε))λmax (S)

where 0 < ĝk(ε) ≤ 1 is the transfer function of the filter and the damping function 0 < f4 ≤ 1.

=⇒ Therefore, it suffices that following inequality be locally hold

f4 (ĝk(ε)) ≤
1

Re

k2

λmax (S)
−→ ε

to guarantee that the production of smaller scales of motion be stopped at the smallest scale
set by the mesh.
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Results for differentially heated cavity at Ra = 1011

Free-parameter approach

wmax Nusselt

The maximum of the averaged vertical velocity at the horizontal mid-height plane and the overall

averaged Nusselt number as a function of the ratio of the filter length ε to the average grid width h.
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Results for differentially heated cavity at Ra = 1011

Profiles

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane.
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How does the parameter-free C̃4 symmetry-preserving regularization modelling
behave for other grids and Ra-numbers?

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane at Ra = 1010.

Even for a very coarse 8× 13× 30 grid reasonable results are being obtained!

=⇒ Results for different grids show the robustness of the method.
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A challenging test: mesh independence analysis at very coarse grids

The overall Nusselt number and the centerline stratification for 50 randomly generated coarse grids

with fixed stretching at Ra = 1010. 8 ≤ Nx ≤ 16, 17 ≤ Ny ≤ 34, and 40 ≤ Nz ≤ 80.
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Conclusions and Future Research

The results shown illustrate the potential of the conservative parameter-free eC4 smoothing as a new

simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

• Robustnest. As the smoothed governing equations preserve the symmetry properties of the

original Navier-Stokes equations the solution cannot blow up (in the energy-norm, in 2D also:

enstrophy-norm). It seems that even for very coarse meshes reasonably results can be obtained.

• Universality. No ad hoc phenomenological arguments that can not be formally derived for the

Navier-Stokes equations are used.

• The proposed method constitutes a parameter-free turbulence model.

Since now, the method has been successfully tested on completely different turbulent configurations

such as:

• Channel flow.

• Flow around a wall-mounted cube.

• Differentially heated cavity at different Ra-numbers.
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Thank you for you attention
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Discretization of the convective operator:
a symmetry-preserving discretization

The spatially discrete incompressible Navier-Stokes equations are expressed as

Ωs

dus

dt
+ C (us)us + Dus + ΩsGpc = 0s

Mus = 0c

=⇒ It was shown that the convective matrix C (us) has to be skew-symmetric,

C (us) + C
∗
(us) = 0

... to preserve the continuous invariants (kinetic energy, enstrophy in 2D and helicity in 3D) in a

discrete sense.
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Choice of the filter

Let us consider a generic linear filter

ūε = Fuε

Then, three basic properties are required for the filter:

ūε = uε +O(ε
2
)

(ΩsF ) = (ΩsF )
∗

F1 = 1

=⇒ Our discrete filter is a 5-point Gaussian filter.
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