New discretizations and regularization models for LES

F.Xavier Trias*, David Folch*, Andrey Gorobets*,*, Assensi Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia *Keldvsh Institute of Applied Mathematics of RAS. Russia

26th International Conference on Parallel Computational Fluid Dynamics Trondheim (Norway), May 20-22 2014

Contents

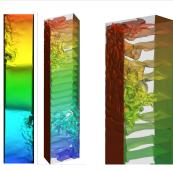
- DNS of turbulence
- Regularization models
- New discretization methods for LES
- Results
- Conclusions

DNS of turbulent incompressible flows

Main features of the DNS code:

DNS of turbulence

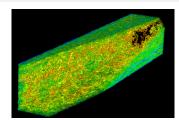
- Structured staggered grids
- High-order symmetry-preserving schemes
- Fully-explicit second-order time-integration method
- Poisson solver for 2.5D problems: FFT + PCG
- Hybrid MPI+OpenMP parallelization
- OpenCL-based extension for its use on GPGPU



Air-filled differentially heated cavity at $Ra=10^{11}$ (111M grid points)

Plane impingement jet at Re = 20000 (102M grid points)

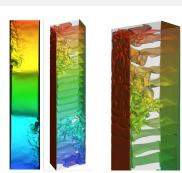
DNS of turbulent incompressible flows



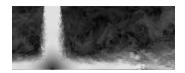
DNS of turbulence

Turbulent square duct at $Re_{\tau}=1200$ (172M grid points)

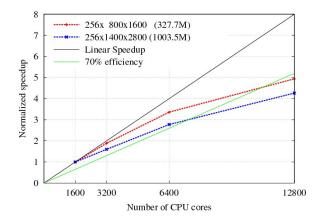
Square cylinder at Re = 22000 (300M grid points)



Air-filled differentially heated cavity at $Ra = 10^{11}$ (111M grid points)



Plane impingement jet at Re = 20000 (102M grid points)



¹A. Gorobets *et al.* "Hybrid MPI+OpenMP parallelization of an FFT-based 3D Poisson solver with one periodic direction" **Computers&Fluids**, 49:101-109,

DNS of turbulence 0000

Incompressible Navier-Stokes equations:

$$\nabla \cdot u = 0$$

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D} u - \nabla p$$

DNS of turbulence

Incompressible Navier-Stokes equations:

$$\nabla \cdot u = 0$$

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D}u - \nabla p$$

where the **nonlinear convective** term is given by

$$\mathcal{C}(u,\phi) = (u \cdot \nabla)\phi$$

and the **linear dissipative** term is given by

$$\mathcal{D}\phi = \nu \Delta \phi$$

We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

that conserve the following inviscid invariants

- Kinetic energy : (u, u)
- (ω,ω) Enstrophy (in 2D) :
- (ω, u) Helicity (in 3D):

We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

that conserve the following inviscid invariants

- Kinetic energy : (u, u)
- Enstrophy (in 2D) : (ω, ω)
- Helicity (in 3D) : (ω, u)

The approximate convective operator must preserve the basic symmetry properties:

$$(\mathcal{C}(u, \mathbf{v}), \mathbf{w}) = -(\mathcal{C}(u, \mathbf{w}), \mathbf{v})$$

 $(\mathcal{C}(u, \mathbf{v}), \Delta \mathbf{v}) = (\mathcal{C}(u, \Delta \mathbf{v}), \mathbf{v})$ in 2D

Regularizations of the non-linear convectiver term can be constructed

$$\tilde{\mathcal{C}}(u,v) = \sum_{i,j,k=0}^{1} a_{ijk} \tilde{\mathcal{C}}_{ijk}(u,v)$$

$$\text{where } \tilde{\mathcal{C}}_{ijk}(u,v) = \frac{\varphi_k}{\varphi_i} \left(\mathcal{C}(\varphi_i(u),\varphi_j(v)) \right) \text{ and } \varphi_i(u) = \left\{ \begin{array}{ll} u \;, & \text{ if } i = 0 \\ \overline{u} \;, & \text{ if } i = 1 \end{array} \right.$$

(·) is a **self-adjoint** filter that **commutes** with differential operators.

Regularizations of the non-linear convectiver term can be constructed

$$\widetilde{\mathcal{C}}(u,v) = \sum_{i,j,k=0}^{1} a_{ijk} \widetilde{\mathcal{C}}_{ijk}(u,v)$$

where
$$\tilde{\mathcal{C}}_{ijk}(u,v) = \varphi_k \left(\mathcal{C}(\varphi_i(u),\varphi_j(v)) \right)$$
 and $\varphi_i(u) = \begin{cases} u, & \text{if } i = 0 \\ \overline{u}, & \text{if } i = 1 \end{cases}$

(·) is a **self-adjoint** filter that **commutes** with differential operators.

Among all possible combinations we find the regularization proposed by Leray, $C(\overline{u}, u)$: $a_{100} = 1$ (with the rest of $a_{iik} = 0$)

 \implies Eight coefficients a_{iik} need to be determined.

$$\tilde{\mathcal{C}}(u,v) = \sum_{i,j,k=0}^{1} a_{ijk} \tilde{\mathcal{C}}_{ijk}(u,v)$$

$$\sum_{i,j,k=0}^{1} a_{ijk} = 1 \longrightarrow \tilde{\mathcal{C}}(u,v) = \mathcal{C}(u,v) + \mathcal{O}(\epsilon^{n}) \quad \text{with } n \ge 2$$

$$\left(\tilde{\mathcal{C}}(u,v), w\right) = -\left(\tilde{\mathcal{C}}(u,w),v\right) \longrightarrow a_{ijk} = a_{ikj}$$

$$\left(\tilde{\mathcal{C}}(u,v),\Delta v\right) = \left(\tilde{\mathcal{C}}(u,\Delta v),v\right) \quad \text{in 2D} \longrightarrow a_{ijk} = a_{kji}$$

²Roel Verstappen, **Computers & Fluids**, 37 (7): 887-897, 2008

$$\tilde{\mathcal{C}}(u,v) = \sum_{i,j,k=0}^{1} a_{ijk} \tilde{\mathcal{C}}_{ijk}(u,v)$$

$$\sum_{i,j,k=0}^{1} a_{ijk} = 1 \longrightarrow \tilde{\mathcal{C}}(u,v) = \mathcal{C}(u,v) + \mathcal{O}(\epsilon^{n}) \quad \text{with } n \ge 2$$

$$\left(\tilde{\mathcal{C}}(u,v), w\right) = -\left(\tilde{\mathcal{C}}(u,w),v\right) \longrightarrow a_{ijk} = a_{ikj}$$

$$\left(\tilde{\mathcal{C}}(u,v),\Delta v\right) = \left(\tilde{\mathcal{C}}(u,\Delta v),v\right) \quad \text{in 2D} \longrightarrow a_{ijk} = a_{kji}$$

This leads to a family of $\mathcal{O}(\epsilon^2)$ -accurate regularizations. Among them²,

$$C_2(u,v) = \tilde{C}_{111}(u,v) = \overline{C}(\overline{u},\overline{v})$$

²Roel Verstappen, **Computers & Fluids**, 37 (7): 887-897, 2008

To cancel second-order terms, three additional conditions need to imposed:

$$\sum_{j,k=0}^{1} a_{1jk} = 0 \qquad \sum_{i,k=0}^{1} a_{i1k} = 0 \qquad \sum_{i,j=0}^{1} a_{ij1} = 0$$

$$\boxed{\mathcal{C}_4^{\gamma}(u,v) = \frac{1}{2}\left(\left(\mathcal{C}_4 + \mathcal{C}_6\right) + \gamma(\mathcal{C}_4 - \mathcal{C}_6)\right)\left(u,v\right)}$$

where \mathcal{C}_4 and \mathcal{C}_6 read

$$\begin{split} \mathcal{C}_4(u,v) &= \mathcal{C}(\bar{u},\bar{v}) + \overline{\mathcal{C}(\bar{u},v')} + \overline{\mathcal{C}(u',\bar{v})} \\ \mathcal{C}_6(u,v) &= \mathcal{C}(\bar{u},\bar{v}) + \mathcal{C}(\bar{u},v') + \mathcal{C}(u',\bar{v}) + \overline{\mathcal{C}(u',v')} \end{split}$$

Taking $\gamma=1$ we obtain the \mathcal{C}_4 approximation²,

$$\partial_t u_{\epsilon} + \mathcal{C}_4(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

in which the convective term in smoothed according to:

$$\boxed{\mathcal{C}_{4}(u,v) = \mathcal{C}(\bar{u},\bar{v}) + \overline{\mathcal{C}(\bar{u},v')} + \overline{\mathcal{C}(u',\bar{v})}}$$

where $u' = u - \bar{u}$ and $C_4(u, v) = C(u, v) + O(\epsilon^4)$ for any symmetric filter.

High-frequencies need to be effectively damped.

But how much?

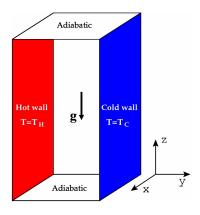
²Roel Verstappen, **Computers & Fluids**, 37 (7): 887-897, 2008

Answer: Again the balance between vortex-stretching contribution and physical dissipation provides a proper value for the damping

$$f_4(\hat{g}_k(\epsilon)) pprox \min \left\{ rac{
u \|\Delta u\|^2}{4|\widetilde{R}|}, 1
ight\}$$

where

$$(\omega, \mathcal{C}_4(\omega, u)) \approx f_4(\hat{g}_k(\epsilon))(\omega, \mathcal{C}(\omega, u))$$



Boundary conditions:

- Isothermal vertical walls
- Adiabatic horizontal walls
- Periodic boundary conditions in the spanwise direction

Dimensionless governing numbers:

•
$$Ra = \beta \Delta T L_z^3 g/(\alpha \nu)$$

•
$$Pr = \nu/\alpha$$

• Height aspect ratio
$$A_z = L_z/L_y$$

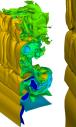
• Depth aspect ratio
$$A_x = L_x/L_y$$

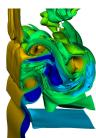
Some details about **DNS**:

- Mesh size: 128 × 682 × 1278.
 - $\bullet \approx 3$ months 256 CPUs
- 4th-order symmetry-preserving scheme
- $A_{7} = 4$

Complexity of the flow:

- Boundary layers
- Stratified cavity core
- Internal waves
- Recirculation areas





³F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:665-673, 2010

⁴F. X. Trias et al. Int. Journal of Heat and Mass Transfer, 53:674-683, 2010

Results for differentially heated cavity at $Ra=10^{11}$

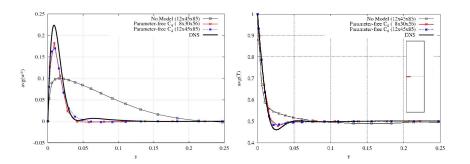
- Regularization model C_4 is tested.
- Two coarse meshes are considered

	DNS	RM1	RM2
Nx	128	12	8
Ny	682	45	30
Nz	1278	85	56

 The discrete linear filter⁵ is based on polynomial functions of the discrete diffusive operator, D

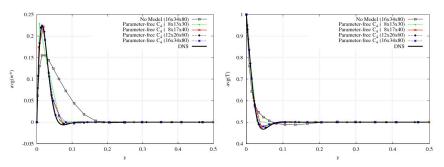
 $^{^5}$ F.X. Trias and R.W.C.P. Verstappen, **Computers & Fluids**, 40:139-148, 2011

Profiles



Averaged vertical velocity and temperature profiles at the horizontal mid-height plane.

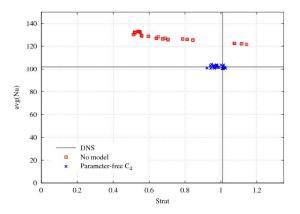
How does the parameter-free C_4 regularization modeling behave for other grids and Ra-numbers?



Averaged vertical velocity and temperature profiles at the horizontal mid-height plane at $Ra=10^{10}$.

Even for a **very coarse** $8 \times 13 \times 30$ grid **reasonable results** are obtained! \implies Results for different grids show the **robustness** of the method.

Challenging C_4 : mesh independence analysis



The overall Nusselt number and the centerline stratification for 50 randomly generated coarse grids with fixed stretching at $Ra = 10^{10}$.

$$8 \le N_x \le 16$$
, $17 \le N_y \le 34$, and $40 \le N_z \le 80$.

Hence, a **new eddy-viscosity** model for LES

$$\partial_t \overline{u} + \mathcal{C}(\overline{u}, \overline{u}) = \mathcal{D}\overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0$$

$$\tau \; (\overline{u}) = -2\nu_t S(\overline{u})$$

Towards a simple LES model

Hence, a **new eddy-viscosity** model for LES

$$\partial_t \overline{u} + \mathcal{C}(\overline{u}, \overline{u}) = \mathcal{D}\overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0$$

$$\tau \; (\overline{u}) = -2\nu_t S(\overline{u})$$

has been derived from the criterion that vortex-stretching mechanism must stop at the smallest grid scale

$$u_t pprox rac{4|\widetilde{R}|}{\|\Delta \overline{u}\|^2}$$

Towards a simple LES model

Hence, a new eddy-viscosity model for LES

$$\partial_t \overline{u} + \mathcal{C}(\overline{u}, \overline{u}) = \mathcal{D}\overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0$$

$$\tau \; (\overline{u}) = -2\nu_t S(\overline{u})$$

has been derived from the criterion that vortex-stretching mechanism must stop at the smallest grid scale

$$u_t pprox rac{4|\widetilde{R}|}{\|\Delta \overline{u}\|^2}$$

And what about the implementation?

• No problems with $4|\widetilde{R}|$ and $||\Delta \overline{u}||^2$.

Hence, a new eddy-viscosity model for LES

$$\partial_t \overline{u} + \mathcal{C}(\overline{u}, \overline{u}) = \mathcal{D}\overline{u} - \nabla \overline{p} - \nabla \cdot \tau(\overline{u}) \; ; \quad \nabla \cdot \overline{u} = 0$$

$$\tau \; (\overline{u}) = -2\nu_t S(\overline{u})$$

has been derived from the criterion that vortex-stretching mechanism must stop at the smallest grid scale

$$\nu_t \approx \frac{4|\widetilde{R}|}{\|\Delta \overline{u}\|^2}$$

And what about the implementation?

- No problems with $4|\tilde{R}|$ and $||\Delta \overline{u}||^2$.
- But, what about the **discretization** of $\nabla \cdot \tau(\overline{u})$?

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D}u - \nabla p$$
 , $\nabla \cdot u = 0$

$$\Omega_s \frac{du_s}{dt} + C(u_s) u_s = Du_s + M^T p_c \qquad , \qquad Mu_s = 0_c$$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

$$\begin{split} \partial_t u + \mathcal{C}(u,u) &= \mathcal{D} u - \nabla p \\ &\quad + 2 \nabla \cdot (\nu_t S(u)), \end{split} \qquad \nabla \cdot u = 0 \\ \Omega_s \frac{du_s}{dt} + C(u_s) \, u_s &= \mathsf{D} u_s + \mathsf{M}^T p_c \\ \end{split} \qquad , \qquad \mathsf{M} u_s = 0_c \\ \text{where } 2 \nabla \cdot (\nu_t S(u)) = \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T). \end{split}$$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

$$\begin{split} \partial_t u + \mathcal{C}(u,u) &= \mathcal{D} u - \nabla p &+ 2\nabla \cdot (\nu_t S(u)), & \nabla \cdot u &= 0 \\ \Omega_s \frac{du_s}{dt} + \mathsf{C}\left(u_s\right) u_s &= \mathsf{D} u_s + \mathsf{M}^T p_c + &?????? &, & \mathsf{M} u_s &= 0_c \end{split}$$
 where $2\nabla \cdot (\nu_t S(u)) = \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T).$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

$$\begin{split} \partial_t u + \mathcal{C}(u,u) &= \mathcal{D} u - \nabla p &+ 2\nabla \cdot (\nu_t S(u)), \qquad \nabla \cdot u = 0 \\ \Omega_s \frac{du_s}{dt} + \mathsf{C}\left(u_s\right) u_s &= \mathsf{D} u_s + \mathsf{M}^T p_c + \qquad ??????? \quad , \qquad \mathsf{M} u_s = 0_c \end{split}$$
 where $2\nabla \cdot (\nu_t S(u)) = \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T).$
$$\nabla \cdot (\nu_t \nabla u^T)$$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

$$\begin{split} \partial_t u + \mathcal{C}(u,u) &= \mathcal{D} u - \nabla p + 2 \nabla \cdot (\nu_t S(u)), \qquad \nabla \cdot u = 0 \\ \Omega_s \frac{du_s}{dt} + \mathcal{C}(u_s) \, u_s &= \mathsf{D} u_s + \mathsf{M}^T p_c + \qquad ??????? \quad , \qquad \mathsf{M} u_s = 0_c \end{split}$$
 where $2 \nabla \cdot (\nu_t S(u)) = \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T).$
$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \nabla \cdot (u \otimes \nabla \nu_t)$$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

$$\begin{split} \partial_t u + \mathcal{C}(u,u) &= \mathcal{D} u - \nabla p &+ 2\nabla \cdot (\nu_t S(u)), \qquad \nabla \cdot u = 0 \\ \Omega_s \frac{du_s}{dt} + \mathcal{C}(u_s) \, u_s &= \mathsf{D} u_s + \mathsf{M}^T p_c + \qquad ??????? \quad , \qquad \mathsf{M} u_s = 0_c \end{split}$$
 where
$$2\nabla \cdot (\nu_t S(u)) &= \nabla \cdot (\nu_t \nabla u) + \nabla \cdot (\nu_t \nabla u^T).$$

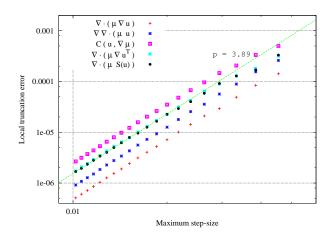
$$\nabla \cdot (\nu_t \nabla u^T) &= \nabla (\nabla \cdot (\nu_t u)) - \nabla \cdot (u \otimes \nabla \nu_t) \\ &= \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t) \end{split}$$

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

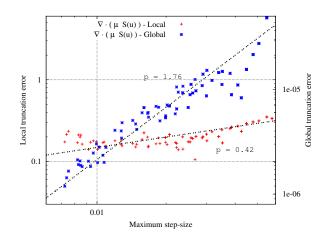
where $[\tilde{u_s}]_f = [\nu_{t,s}]_f [u_s]_f$. Straightforward implementation!!!

⁶F.X.Trias et al. A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity **Journal of Computational Physics**, 253:405-417. 2013

4th-order FVM on a staggered Cartesian grid



2th-order FVM on a collocated unstructured grid



Let's make it even easier...

$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t)$$

$$\underbrace{\frac{-\mathsf{M}^\mathsf{T}\Omega_c^{-1}\mathsf{M}\widetilde{u}_s}{\approx \nabla(\nabla \cdot (\nu_t u))}}_{} - \underbrace{\frac{\mathsf{C}\left(u_s\right)\left(-\Omega_s^{-1}\mathsf{M}^\mathsf{T}\nu_{t,c}\right)}{\approx \mathcal{C}\left(u,\nabla\nu_t\right)}}_{}$$

Let's make it even easier...

$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t)$$

$$\underbrace{\frac{-\mathsf{M}^{\mathsf{T}}\Omega_{c}^{-1}\mathsf{M}\tilde{u}_{s}}{\approx \nabla(\nabla \cdot (\nu_{t}u))}}_{} - \underbrace{\frac{\mathsf{C}\left(u_{s}\right)\left(-\Omega_{s}^{-1}\mathsf{M}^{\mathsf{T}}\nu_{t,c}\right)}{\approx \mathcal{C}\left(u,\nabla\nu_{t}\right)}}_{}$$

Since $\nabla(\nabla \cdot (\nu_t u))$ is a gradient of a scalar field, this term can be absorbed into the pressure, $\pi = p - \nabla \cdot (\nu_t u)$.

Let's make it even easier...

$$\nabla \cdot (\nu_t \nabla u^T) = \nabla (\nabla \cdot (\nu_t u)) - \mathcal{C}(u, \nabla \nu_t)$$

$$\underbrace{\frac{-\mathsf{M}^T\Omega_c^{-1}\mathsf{M}\widetilde{u}_s}{\approx \nabla(\nabla \cdot (\nu_t u))}}_{} - \underbrace{\frac{\mathsf{C}\left(u_s\right)\left(-\Omega_s^{-1}\mathsf{M}^T\nu_{t,c}\right)}{\approx \mathcal{C}\left(u,\nabla\nu_t\right)}}_{}$$

Since $\nabla(\nabla \cdot (\nu_t u))$ is a gradient of a scalar field, this term can be absorbed into the pressure, $\pi = p - \nabla \cdot (\nu_t u)$.

Therefore, the only term that needs to be discretized is

$$-\underbrace{\frac{\mathsf{C}(u_s)(-\Omega_s^{-1}\mathsf{M}^T\nu_{t,c})}{\approx \mathcal{C}(u,\nabla\nu_t)}}$$

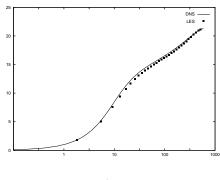
Preliminary results

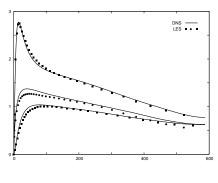
Turbulent channel flow

$$Re_{\tau}=590$$

DNS Moser et al.

LES 64³





mean velocity

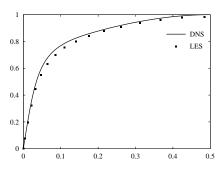
rms fluctuations

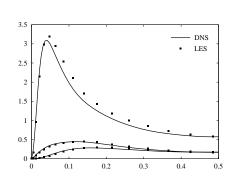
Preliminary results

Turbulent square duct

$$Re_{\tau} = 300$$

LES
$$64 \times 32 \times 32$$





mean velocity

rms fluctuations

Conclusions

• The ratio between the invariant R and the (total) dissipation provides a proper differential operator for turbulence models.

Conclusions

- The ratio between the invariant R and the (total) dissipation provides a proper differential operator for turbulence models.
- Based on this, a new eddy-viscosity type LES models has been derived.

Conclusions

- The ratio between the invariant R and the (total) dissipation provides a proper differential operator for turbulence models.
- Based on this, a new eddy-viscosity type LES models has been derived.
- A simple new approach to discretize the viscous term for eddy-viscosity models has been proposed.

Conclusions and Future Research

- The ratio between the invariant R and the (total) dissipation provides a proper differential operator for turbulence models.
- Based on this, a new eddy-viscosity type LES models has been derived
- A simple new approach to discretize the viscous term for eddy-viscosity models has been proposed.
- Test the performance of new eddy-viscosity type LES for other configurations.

Conclusions and Future Research

- The ratio between the invariant R and the (total) dissipation provides a proper differential operator for turbulence models.
- Based on this, a new eddy-viscosity type LES models has been derived
- A simple new approach to discretize the viscous term for eddy-viscosity models has been proposed.
- Test the performance of new eddy-viscosity type LES for other configurations.
- Try to properly combine regularization modeling and LES.

Further reading

- Roel Verstappen, "When does eddy viscosity damp subfilter scales sufficiently?", Journal of Scientific Computing, 49 (1): 94-110, 2011
- F.X.Trias, R.W.C.P.Verstappen, A.Gorobets, M.Soria, A.Oliva, "Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity", Computers & Fluids, 39:1815-1831, 2010.
- F.X.Trias, A.Gorobets, A.Oliva, A simple approach to discretize the viscous term with spatially varying (eddy-)viscosity, Journal of Computational Physics, 253:405-417, 2013.