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Presentation outline
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• DNS results for Ra = 1010, Pr = 0.71

• Governing equations

2. Regularization models for the simulation of turbulence

• Existing regularization: Leray and Navier-Stokes-α models

• Symmetry-preserving regularization models

• Discretization of the convective operator: a symmetry-preserving discretization
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Problem definition: Differentially Heated Cavity
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Boundary conditions:

• Isothermal vertical walls

• Adiabatic horizontal walls

• Periodic boundary conditions in the x-

direction, orthogonal to the main flow

Dimensionless governing numbers:

• Raz =
β∆TL3

zg
αν

• Pr = ν
α

• Height aspect ratio Az = Lz
Ly

• Depth aspect ratio Ax = Lx
Ly
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DNS results for Ra = 1010, Pr = 0.71

Some details about DNS simulations:

• Mesh size: 64× 136× 324

• Computing Time: ≈ 1 month - 24 CPUs

• 4th-order symmetry-preserving discretization

Complexity of the flow:

• Boundary layers

• Stratified cavity core

• Internal waves

• Recirculation areas
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Governing equations

Incompressible Navier-Stokes coupled with energy transport equation:

∇ · u = 0

∂tu + C(u, u) = PrD(u)−∇p + f

∂tT + C(u, T ) = D(T )

where f = (0, 0, RaPrT ) (Boussinesq approximation) and the nonlinear convective term is given

by

C(u, v) = (u · ∇)v

and the linear dissipative term is given by

D(u) =
1

Ra0.5
∇2

u
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Regularization modelling

A dynamically less complex mathematical formulation is sought. We consider smooth

approximations (regularizations) of the nonlinearity,

∂tuε + eC(uε, uε) = PrD(uε)−∇pε + f

∂tTε + eC(uε, Tε) = D(Tε)

such approximations may fall in the Large-Eddy Simulation (LES) concept,

∂tūε + C(ūε, ūε) = PrD(ūε)−∇p̄ε + f +M1(ūε, ūε)

∂tT ε + C(ūε, T ε) = D(T ε) +M2(ūε, T ε)

if the model terms were given by

M1(ūε, ūε) = C(ūε, ūε)− eC(ūε, ūε)

M2(ūε, T ε) = C(ūε, T ε)− eC(ūε, T ε)
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Existing regularization modellings
Leray and Navier-Stokes-α models

The regularization methods basically alters the convective term to restrain the production of
small scales of motion.

• Leray model:

∂tuε + C(ūε, uε) = D(uε)−∇pε

• Navier-Stokes-α model:

∂tuε + Cr(uε, ūε) = D(uε)−∇πε

where the π = p + u2/2 and the convetive operator in rotational form is defined as

Cr(u, v) = (∇× u)× v

However, in doing so some of the inviscid invariants (kinetic energy, enstrophy in 2D and helicity

in 3D) are not conserved.
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Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

• Kinetic energy R
Ω

u · udΩ

• Enstrophy (in 2D) R
Ω
(∇× u) · (∇× u)dΩ

• Helicity (in 3D) R
Ω
(∇× u) · udΩ

the approximate convective operator has to be skew-symmetric:

“ eC(u, v), w
”

= −
“ eC(u, w), v

”
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Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations...

∂tuε + Cn(uε, uε) = D(uε)−∇pε

in which the convective term in smoothened according to:

C2(u, v) = C(ū, v̄)

C4(u, v) = C(ū, v̄) + C(ū, v′) + C(u′, v̄)

C6(u, v) = C(ū, v̄) + C(ū, v
′
) + C(u′, v̄) + C(u′, v′)

where u′ = u− ū and Cn(u, v) = C(u, v) +O(εn) for any symmetric filter.
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Discretization of the convective operator:
a symmetry-preserving discretization

The spatially discrete incompressible Navier-Stokes equations can be expressed as

H
duh

dt
+ C(uh)uh + Duh −M

T
ph = 0

Muh = 0

It can be shown that the convective matrix C(uh) has to be skew-symmetric,

C(uh) + C
T
(uh) = 0

to preserve the continuous invariants (kinetic energy, enstrophy in 2D and helicity in 3D) in a

discrete sense.
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Choice of the filter

Let us consider a generic linear filter

ūε = Fuε

Then, three basic properties are required for the filter:

ūε = uε +O(ε
2
)

(HF ) = (HF )
T

F1 = 1

=⇒ Our filter is based on the elliptic differential operator

(1− α
2
1∂

2
xx − α

2
2∂

2
yy − α

2
3∂

2
zz)ūε = uε

where filter length is defined by

εi = αi

√
24
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Results for differentially heated cavity at Ra = 1010

• Regularization model C4 is tested.

• Two very coarse meshes are considered

DNS RM1 RM2

Nx 64 8 8

Ny 136 17 13

Nz 324 40 30

∆xmin 7.81× 10−3 6.25× 10−2 6.25× 10−2

∆ymin 1.11× 10−3 8.88× 10−3 1.16× 10−2

∆zmin 1.23× 10−2 9.96× 10−2 1.33× 10−1

• Ratio ε/h (filter length to the average grid width) is kept constant in all three spatial directions.
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Results for differentially heated cavity at Ra = 1010

Mean fields

8× 13× 30 8× 17× 40

Averaged vertical velocity profile at the horizontal mid-height plane for different ε/h ratios.
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Results for differentially heated cavity at Ra = 1010

Mean fields

8× 13× 30 8× 17× 40

Averaged temperature profile at the horizontal mid-height plane for different ε/h ratios.
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Results for differentially heated cavity at Ra = 1010

Convergence studies

wmax Nusselt

The maximum of the averaged vertical velocity at the horizontal mid-height plane and the overall

averaged Nusselt number as a function of the ratio of the filter length ε to the average grid width h.
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Results for differentially heated cavity at Ra = 1010

Turbulent statistics

8× 13× 30 8× 17× 40

Turbulent kinetic energy k = u′iu
′
i profile at the horizontal mid-height plane for different filter lengths

ε.
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How the C̃4 symmetry-preserving regularization modelling
behave for finer grids?

First preliminary results on a finer 16 × 34 × 80 grid does not seem to improve the agreement

with DNS results...

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane for different filter lengths ε.

=⇒ The problem seems to be related with the linear filter.
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Conclusions and Future Research

The first results shown illustrate the potential of conservative smoothing as a new simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

• Robustnest. As the smoothed governing equations preserve the symmetry properties of the

original Navier-Stokes equations the solution can not blow up (in the energy-norm, in 2D also:

enstrophy-norm). It seems that even for very coarse meshes reasonably results can be obtained.

• Universality. No ad hoc phenomenological arguments that can not be formally derived for the

Navier-Stokes equations are used.

However, once the robustnest of the method has been shown for very coarse meshes, future research
should focus on the construction of more appropriate linear filters.
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