

ECCOMAS CFD 2006

September 5-8, 2006 Egmond aan Zee, The Netherlands.

Regularization models for the simulation of turbulence in a differentially heated cavity

F.X. Trias^{*}, M. Soria^{*}, A. Oliva^{*} and R.W.C.P. Verstappen^{*}

*Centre Tecnològic de Transferència de Calor (CTTC), Universitat Politècnica de Catalunya C/ Colom 11, 08222 Terrassa, Barcelona, Spain, E-mail: cttc@cttc.upc.edu

*Institute of Mathematics and Computing Science, University of Groningen P.O. Box 800, 9700 AV Groningen, The Netherlands, E-mail: R.W.C.P.Verstappen@rug.nl

Presentation outline

- 1. Introduction
 - Problem definition: Differentially Heated Cavity
 - DNS results for $Ra = 10^{10}$, Pr = 0.71
 - Governing equations
- 2. Regularization models for the simulation of turbulence
 - Existing regularization: Leray and Navier-Stokes- α models
 - Symmetry-preserving regularization models
 - Discretization of the convective operator: a symmetry-preserving discretization
 - Choice of the filter
- 3. Results for a Differentially Heated Cavity
 - Description of cases
 - Mean fields
 - Convergence studies
 - Turbulent statistics
- 4. Conclusions and Future Research

Problem definition: Differentially Heated Cavity

Boundary conditions:

- Isothermal vertical walls
- Adiabatic horizontal walls
- **Periodic** boundary conditions in the *x*-direction, orthogonal to the main flow

Dimensionless governing numbers:

•
$$Ra_z = rac{eta \Delta T L_z^3 g}{\alpha
u}$$

- $Pr = \frac{\nu}{\alpha}$
- Height aspect ratio $A_z = \frac{L_z}{L_y}$
- Depth aspect ratio $A_x = \frac{L_x}{L_y}$

DNS results for $Ra = 10^{10}$, Pr = 0.71

Some details about **DNS simulations**:

- Mesh size: $64 \times 136 \times 324$
- Computing Time: pprox 1 month 24 CPUs
- 4th-order symmetry-preserving discretization

Complexity of the flow:

- Boundary layers
- Stratified cavity core
- Internal waves
- Recirculation areas

Governing equations

Incompressible Navier-Stokes coupled with energy transport equation:

 $\nabla \cdot u = 0$ $\partial_t u + \mathcal{C}(u, u) = Pr\mathcal{D}(u) - \nabla p + f$ $\partial_t T + \mathcal{C}(u, T) = \mathcal{D}(T)$

where f = (0, 0, RaPrT) (Boussinesq approximation) and the **nonlinear convective term** is given by

$$\mathcal{C}(u,v) = (u \cdot \nabla)v$$

and the linear dissipative term is given by

$$\mathcal{D}(u) = rac{1}{Ra^{0.5}}
abla^2 u$$

Regularization modelling

A **dynamically less complex mathematical formulation** is sought. We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = Pr\mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon} + f$$

$$\partial_t T_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, T_{\epsilon}) = \mathcal{D}(T_{\epsilon})$$

such approximations may fall in the Large-Eddy Simulation (LES) concept,

$$\partial_t \bar{u}_{\epsilon} + \mathcal{C}(\bar{u}_{\epsilon}, \bar{u}_{\epsilon}) = Pr\mathcal{D}(\bar{u}_{\epsilon}) - \nabla \bar{p}_{\epsilon} + f + \mathcal{M}_1(\bar{u}_{\epsilon}, \bar{u}_{\epsilon})$$

$$\partial_t \overline{T}_{\epsilon} + \mathcal{C}(\bar{u}_{\epsilon}, \overline{T}_{\epsilon}) = \mathcal{D}(\overline{T}_{\epsilon}) + \mathcal{M}_2(\bar{u}_{\epsilon}, \overline{T}_{\epsilon})$$

if the model terms were given by

$$\mathcal{M}_1(\bar{u}_{\epsilon}, \bar{u}_{\epsilon}) = \mathcal{C}(\bar{u}_{\epsilon}, \bar{u}_{\epsilon}) - \overline{\widetilde{C}(\bar{u}_{\epsilon}, \bar{u}_{\epsilon})}$$
$$\mathcal{M}_2(\bar{u}_{\epsilon}, \overline{T}_{\epsilon}) = \mathcal{C}(\bar{u}_{\epsilon}, \overline{T}_{\epsilon}) - \overline{\widetilde{C}(\bar{u}_{\epsilon}, \overline{T}_{\epsilon})}$$

Existing regularization modellings

Leray and Navier-Stokes- α models

The regularization methods basically **alters the convective term** to **restrain the production of small scales** of motion.

• Leray model:

$$\partial_t u_\epsilon + \mathcal{C}(\bar{u}_\epsilon, u_\epsilon) = \mathcal{D}(u_\epsilon) - \nabla p_\epsilon$$

• Navier-Stokes- α model:

$$\partial_t u_\epsilon + \mathcal{C}_r(u_\epsilon, \bar{u}_\epsilon) = \mathcal{D}(u_\epsilon) - \nabla \pi_\epsilon$$

where the $\pi = p + u^2/2$ and the convetive operator in rotational form is defined as

$$\mathcal{C}_r(u,v) = (\nabla \times u) \times v$$

However, in doing so some of the **inviscid invariants** (kinetic energy, enstrophy in 2D and helicity in 3D) are **not conserved**.

Symmetry-preserving regularization models (1/2)

In order to conserve the following inviscid invariants

• Kinetic energy

 $egin{array}{lll} &\int_\Omega u\cdot ud\Omega \ &\int_\Omega (
abla imes u)\cdot (
abla imes u) d\Omega \ &\int_\Omega (
abla imes u)\cdot ud\Omega \end{array}$

- Enstrophy (in 2D)
- Helicity (in 3D)

the approximate convective operator has to be skew-symmetric:

$$\left(\widetilde{\mathcal{C}}(u,v),w\right) = -\left(\widetilde{\mathcal{C}}(u,w),v\right)$$

Symmetry-preserving regularization models (2/2)

This criterion yields the following class of approximations...

$$\partial_t u_\epsilon + \mathcal{C}_n(u_\epsilon, u_\epsilon) = \mathcal{D}(u_\epsilon) - \nabla p_\epsilon$$

in which the convective term in smoothened according to:

$$C_{2}(u,v) = \overline{\mathcal{C}(\bar{u},\bar{v})}$$

$$C_{4}(u,v) = \mathcal{C}(\bar{u},\bar{v}) + \overline{\mathcal{C}(\bar{u},v')} + \overline{\mathcal{C}(u',\bar{v})}$$

$$C_{6}(u,v) = \mathcal{C}(\bar{u},\bar{v}) + \mathcal{C}(\bar{u},v') + \mathcal{C}(u',\bar{v}) + \overline{\mathcal{C}(u',v')}$$

where $u' = u - \bar{u}$ and $C_n(u, v) = C(u, v) + O(\epsilon^n)$ for any symmetric filter.

Discretization of the convective operator: a symmetry-preserving discretization

The spatially discrete incompressible Navier-Stokes equations can be expressed as

$$\mathsf{H}rac{du_h}{dt} + \mathsf{C}(u_h)u_h + \mathsf{D}u_h - \mathsf{M}^T p_h = 0$$
 $\mathsf{M}u_h = 0$

It can be shown that the **convective matrix** $C(u_h)$ has to be **skew-symmetric**,

$$\mathsf{C}(u_h) + \mathsf{C}^T(u_h) = 0$$

to **preserve** the continuous **invariants** (kinetic energy, enstrophy in 2D and helicity in 3D) in a **discrete sense**.

Choice of the filter

Let us consider a generic linear filter

$$\bar{u}_{\epsilon} = F u_{\epsilon}$$

Then, three basic properties are required for the filter:

$$ar{u}_\epsilon = u_\epsilon + \mathcal{O}(\epsilon^2)$$

 $(HF) = (HF)^T$
 $F1 = 1$

 \implies Our filter is based on the elliptic differential operator

$$(1 - \alpha_1^2 \partial_{xx}^2 - \alpha_2^2 \partial_{yy}^2 - \alpha_3^2 \partial_{zz}^2) \bar{u}_{\epsilon} = u_{\epsilon}$$

where filter length is defined by

$$\epsilon_i = \alpha_i \sqrt{24}$$

- Regularization model C_4 is tested.
- Two very coarse meshes are considered

	DNS	RM1	RM2
Nx	64	8	8
Ny	136	17	13
Nz	324	40	30
Δx_{min}	$7.81 imes10^{-3}$	$6.25 imes10^{-2}$	$6.25 imes10^{-2}$
Δy_{min}	$1.11 imes 10^{-3}$	$8.88 imes 10^{-3}$	$1.16 imes 10^{-2}$
Δz_{min}	$1.23 imes 10^{-2}$	$9.96 imes 10^{-2}$	$1.33 imes 10^{-1}$

• Ratio ϵ/h (filter length to the average grid width) is kept constant in all three spatial directions.

Mean fields

 $8 \times 13 \times 30$

Averaged vertical velocity profile at the horizontal mid-height plane for different ϵ/h ratios.

Mean fields

 $8 \times 13 \times 30$

Averaged temperature profile at the horizontal mid-height plane for different ϵ/h ratios.

Nusselt

Results for differentially heated cavity at $Ra = 10^{10}$

Convergence studies

 w_{max}

The maximum of the averaged vertical velocity at the horizontal mid-height plane and the overall averaged Nusselt number as a function of the ratio of the filter length ϵ to the average grid width h.

Turbulent statistics

 $8 \times 13 \times 30$

Turbulent kinetic energy $k = \overline{u'_i u'_i}$ profile at the horizontal mid-height plane for different filter lengths ϵ .

How the $\widetilde{\mathcal{C}}_4$ symmetry-preserving regularization modelling behave for finer grids?

First preliminary results on a finer $16\times 34\times 80$ grid does not seem to improve the agreement with DNS results...

Averaged vertical velocity and temperature profiles at the horizontal mid-height plane for different filter lengths ϵ .

 \implies The problem seems to be related with the **linear filter**.

Conclusions and Future Research

The first results shown illustrate the potential of conservative smoothing as a new simulation shortcut.

The main advantages with respect exiting LES models can be summarized:

- **Robustnest**. As the smoothed governing equations preserve the symmetry properties of the original Navier-Stokes equations the solution can not blow up (in the energy-norm, in 2D also: enstrophy-norm). It seems that even for very coarse meshes reasonably results can be obtained.
- Universality. No *ad hoc* phenomenological arguments that can not be formally derived for the Navier-Stokes equations are used.

However, once the robustnest of the method has been shown for very coarse meshes, **future research** should focus on the construction of more appropriate **linear filters**.