Spectrally-consistent regularization modelling of
wind farm boundary layers

F.Xavier Trias*, David Folch*, Andrey Gorobets* T, Assensi
Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia

TKeldysh Institute of Applied Mathematics of RAS, Russia

Conference on Modelling Fluid Flow (CMFF'12)
Budapest (Hungary), Sept 4-7 2012

Spectrally-consistent regularization modelling



Contents

@ Dns

© Regularization
© Hyperviscosity
@ Vortex-stretching
© Parameters

@ First results

@ Conclusions

Spectrally-consistent regularization modelling



DNS
©00000

DNS of turbulent incompressible flows

Main features of the DNS
code:

@ Pseudo-spectral method

@ 3/2 rule de-aliasing
technique

@ Structured non-staggered
grids

@ Fully-explicit
second-order
time-integration method Offshore wind farm

@ MPI parallelization
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Towards wind farm simulation

Steps to final DNS:

@ Forced homogeneus isotropic turbulence
@ Channel flow
@ Atmospheric boundary layer

@ Wind farm simulation
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Forced homogoneus isotropic turbulent square box up to

Re\ ~ 202

Forced energy spectrum
L=2r

Rey ~ 72, 202

v ~ 0.003,0.0004

E; E; fixed energies
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Channel flow at Re, = 180

e h=25=20
@ Re, =180
o Up=1.0
' e Rey = 3300
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Strong Scaling
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Governing equations

Incompressible Navier-Stokes equations:

V-u = 0
Oru+C(u,u) = Du—Vp

where the nonlinear convective term is given by
C(uv ¢) = (U ’ V)¢
and the linear dissipative term is given by

Do = vAd
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Symmetry-preserving regularization modeling

We consider smooth approximations (regularizations) of the
nonlinearity,

Orue +C(ue,ue) = D(ue) — Vpe

that conserve the following inviscid invariants

e Kinetic energy : (u, u)
e Enstrophy (in 2D) : (w,w)
@ Helicity (in 3D) : (w, u)
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Symmetry-preserving regularization modeling

We consider smooth approximations (regularizations) of the
nonlinearity,

Orue +C(ue,ue) = D(ue) — Vpe

that conserve the following inviscid invariants

e Kinetic energy : (u, u)
e Enstrophy (in 2D) : (w,w)
@ Helicity (in 3D) : (w, u)

The approximate convective operator must preserve the basic
symmetry properties:

(C(u7 V)v W) == (C(u7 W)’ V)
(C(u,v),Av) = (C(u,Av),v) in2D
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Symmetry-preserving regularization models

Finally

Ci(u,v) =5 ((Ca +C6) +(Ca = Ce)) (u, v)

N —

where C4 and Cg read

Ca(u,v) =C(0,v)+C(u,v')+C(v, V)
Co(u,v) =C(m,v)+C(a, V') +C(v,v) +C(v, V)
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Symmetry-preserving regularization models

Taking v = 1 we obtain the C4 approximation®,

atue + C4(u67 ue) = D(ue) - vpe

in which the convective term in smoothed according to:

Ca(u,v) = C(a,7) + C(@, V) + C(d, V)

where v’ = u— 7 and Cq(u, v) = C(u, v) + O(e*) for any
symmetric filter.

9Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008
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Symmetry-preserving regularization models

Two main drawbacks:

@ Additional hump in the tail of the energy spectrum

@ For very coarse meshes, the damping factor can take very
small values

How do we adress it?
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Symmetry-preserving regularization models

Two main drawbacks:

@ Additional hump in the tail of the energy spectrum

@ For very coarse meshes, the damping factor can take very
small values

How do we adress it?

Answer: Restoring the galilean invariance with an hyperviscosity
effect.
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Restoring the Galilean invariance: hyperviscosity effect

The C; regularization
8tUE+CZ(U6,U6) :D(Ue)—VPE ; V-u=0

preserves all the invariant transformations of the original NS
equations, except the Galilean transformation. To restore it,
the time-derivative, 0;u., needs to be replaced by the following
fourth-order approximation:

(0e)que = Or(ue = 1/2(1+ )ul) = G (Oruc),

Since (G7)"(¢) =~ 26 — G (¢) + O(e%), an energetically almost
equivalent set of equations can be derived:
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Restoring the Galilean invariance: hyperviscosity effect

Orte + CJ(Ue,ue) =Dju.—Vpe ; V-u=0

Compared with the C; regularization, the {CD}] equations
reinforce the dissipation by means of the hyperviscosity term

Dju="Du+1/2(1+~)(DJ)
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Restoring the Galilean invariance: hyperviscosity effect

Orte + CJ(Ue,ue) =Dju.—Vpe ; V-u=0

Compared with the C; regularization, the {CD}] equations
reinforce the dissipation by means of the hyperviscosity term

Dju="Du+1/2(1+~)(DJ)

Recalling that ' = —(€2/24)Au+ O(e*), the additional
dissipation to the kinetic energy is approximately given by

1 € 2
reg o 2
et ~ 2(14_7) (24> (Aue,A ug)
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Restoring the Galilean invariance: hyperviscosity effect

The spectral representation is

CZ(Uu v)k = iM(k) Z f47 (gkvgpagq) Upqlqg
p+q=k

DYui = by (21 )vIk i

so the diffusive term is multiplied by

hi(2e) = 1+59(1 — g)?
where hy > 1.
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Stopping the vortex-stretching!

Taking the curl of momentum equation the vorticity transport
equation follows

Orw +C (u,w) =C(w,u) +D(w)

LF.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
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Stopping the vortex-stretching!

Taking the curl of momentum equation the vorticity transport
equation follows

Orw +C (u,w) =C(w,u) +D(w)

Let us now consider periodic boundary conditions. Then, the
enstrophy equation:

1d

§$(w7w) = (w,C(w, u)) — v(Vw, Vw)

LF.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
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Vortex-stretching
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Stopping the vortex-stretching!

Taking the curl of momentum equation the vorticity transport
equation follows

Orw +C (u,w) =C(w,u) +D(w)

Let us now consider periodic boundary conditions. Then, the
enstrophy equation:

1d
2 dt
Unless the grid is fine enough, convection dominates diffusion:

(w,w) = (w,C(w, u)) — v (Vw, Vw)

(w,C(w,u)) > v(Vw,Vw)

LF.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
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Stopping the vortex-stretching

In order to prevent local intensification of vorticity, dissipation must
dominate the vortex-stretching term at the smallest grid scale.

Dk, - C4 (w, 1) +CJ (w, 1),

~ o~k
200k, - Wy

Wi
- < hy (&) vkZ

Very difficult to compute...
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Stopping the vortex-stretching

We want that the triadic interactions at the smallest scale be
independent of the interacting pairs

ﬁlv(gkgag—P?gq) ~ fll’y(gkg)'

So the overall damping effect at the smallest grid scale is
Ha(gr.) = 13/ (2r. )/ hi(ex.)

with the crucial condition that 0 < Ha(g. ) < 1.
Then...
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Stopping the vortex-stretching

Then... we have a regularization model with two parameters:

e overall damping Ha(gk, )

@ gamma 7y

How can we deal with them?
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On the determination of Hy(gx,)

We can express Hs(gx.), as a function of the invariants R and @ of
the strain tensor, S(u) = 1/2(Vu+ VuT).
where

R = —1/3tr(S%) = —det(S) = —\1\2)3

Q= —1/2tr(5%) = —1/2(0\3 + A3+ \2)
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On the determination of Hy(gx,)

The diffusive term can be bounded by its largest eigenvalue
(Vw, Vw) = — (w, Aw) < =Aa (w,w),

Finally

~ : Q
Ha(8k.) = min {V)\ARJF, 1}

where R = max{R,0}
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On the determination of Hy(gx,)

Main features of the model:
e Lower bound for Hy(gk.)

@ It automatically switches off when h approaches to the
smallest scale in a turbulent flow

@ It automatically switches off for laminar flows (no
vortex-stretching) and 2D flows

o It automatically switches off in the wall
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On the determination of ~

@ We assume that the smallest grid scale k. = 7/h lies within
the inertial range for a classical Kolmogorov energy spectrum

E(k) = Cye?/3k5/3

The total dissipation for kT < k < k. can be approximated by the
contribution of the following two terms

ke
D, = y/ K2E(k)dk,
kr

7" ke
D,=v | k*a*E(k)dk,
kr

where D, is the physical viscous dissipation and DZ is the
additional dissipation introduced by the hyperviscosity term,
(Dd'Y.
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On the determination of ~

o We assume that Hy = O(Ha(8x.))
@ We can bound the ratio R /@ by @ and hence H,

@ We can compute approximately the invariant Q with
Kolmogorov spectrum

Then

4/3
5> 4{8@;3/2 - (1 - (ll‘:) )} ~4 (8672 -1)

Hence, for a Kolmogorov constant of Cx ~ 1.58 it leads to a lower
limit of 4 ~ 12.1 or (v ~ 23.2)
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Test-case: Forced homogeneus isotropic turbulence
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Energy spectra at Rey = 72 for different values of 4 from 0 up to 30
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Test-case: Forced homogeneus isotropic turbulence
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Energy spectra at Rey = 72 for different values of 4 from 0 up to 30
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Test-case: Forced homogeneus isotropic turbulence
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Energy spectra at Rey = 72 for different values of 4 from 0 up to 30
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Test-case: Forced homogeneus isotropic turbulence
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Energy spectra at Rey = 202 for different values of 4 from 0 up to 30
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Test-case: Forced homogeneus isotropic turbulence

No model 256°
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Energy spectra at Rey = 202 for different values of 4 from 0 up to 30
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Test-case: Forced homogeneus isotropic turbulence
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Energy spectra at Rey = 202 for different values of 4 from 0 up to 30
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Channel flow Re-

0 20 40 60 80 . 100 120 140 160

Grid size 32x32x32. Some turbulent statistics
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Channel flow Re, = 180

80

Grid size 32x32x32. Mean streamwise velocity profile
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Conclusions

@ The numerical results illustrate the potential of {CD},
regularization as a parameter-free turbulence model.
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Conclusions

@ The numerical results illustrate the potential of {CD},
regularization as a parameter-free turbulence model.

@ Robustnest. It preserves the symmetry properties and
therefore, the solution cannot blow up even for very coarse
meshes.
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Conclusions and Future Research

e {CD}, regularization of channel flow

@ Wind farm simulation
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Thank you for you attention
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Further reading about C, regularization

@ Roel Verstappen, “On restraining the production of small
scales of motion in a turbulent channel flow”, Computers &
Fluids, 37 (7): 887-897, 2008

o F. X. Trias et al., “Parameter-free symmetry-preserving
regularization modeling of a turbulent differentially heated
cavity”, Computers & Fluids, 39:1815-1831, 2010.

o F. X. Trias and R.W.C.P. Verstappen, “On the construction of
discrete filters for symmetry-preserving regularization models”,
Computers & Fluids, 40:139-148, 2011.
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Weak Scaling
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On the determination of ~

Hence

N, 3V ~ ~
D, +4D, = 7 Cre?/3 { (4 + 7a4kf> K43 — (4 + m“k‘}) k‘%"}
where ¥ = 1/2(1 + ). At the tail of the spectrum
I:I4 ~ 7,2)” * ;)ﬂ/D;//
5

represents the ratio between the total dissipation and the energy
transferred from scales larger than k1
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