DNS 000000	Regularization	Hyperviscosity 000	Vortex-stretching 0000	Parameters 00000	First results 00000000	Conclusions

Spectrally-consistent regularization modelling of wind farm boundary layers

F.Xavier Trias*, David Folch*, Andrey Gorobets*,[†], Assensi Oliva*

*Heat and Mass Transfer Technological Center, Technical University of Catalonia [†]Keldysh Institute of Applied Mathematics of RAS, Russia

> Conference on Modelling Fluid Flow (CMFF'12) Budapest (Hungary), Sept 4-7 2012

DNS 000000	Regularization	Hyperviscosity 000	Vortex-stretching 0000	Parameters 00000	First results 00000000	Conclusions
Cont	ents					

1 DNS

2 Regularization

- 3 Hyperviscosity
- 4 Vortex-stretching

5 Parameters

6 First results

Conclusions

 DNS
 Regularization
 Hyperviscosity
 Vortex-stretching
 Parameters
 First results
 Conclusions

 000000
 0000
 0000
 0000
 00000
 000000
 000000

DNS of turbulent incompressible flows

Main features of the DNS code:

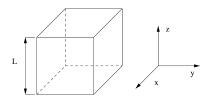
- Pseudo-spectral method
- 3/2 rule de-aliasing technique
- Structured non-staggered grids
- Fully-explicit second-order time-integration method
- MPI parallelization

Offshore wind farm

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
0●0000	0000	000	0000	00000	00000000	000000
Towa	ards wind	farm simi	ulation			

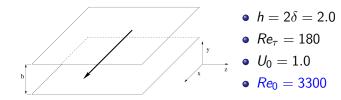
Steps to final DNS:

- Forced homogeneus isotropic turbulence
- Channel flow
- Atmospheric boundary layer
- Wind farm simulation



- Forced energy spectrum
- $L = 2\pi$
- $Re_\lambda \approx$ 72, 202
- $\nu \approx 0.003, 0.0004$
- E₁, E₂ fixed energies

Channel flow at ${\it Re_{ au}}=180$



DNS 0000●0	Regularization	Hyperviscosity 000	Vortex-stretching 0000	Parameters 00000	First results 00000000	Conclusions
Stror	ng Scaling	ξ				



 DNS
 Regularization
 Hyperviscosity
 Vortex-stretching
 Parameters
 First results
 Conclusions

 Governing equations
 Governing
 Conclusions
 Conclusions

Incompressible Navier-Stokes equations:

$$\nabla \cdot u = 0$$

$$\partial_t u + \mathcal{C}(u, u) = \mathcal{D} u - \nabla p$$

where the nonlinear convective term is given by

 $\mathcal{C}(u,\phi) = (u \cdot \nabla)\phi$

and the linear dissipative term is given by

 $\mathcal{D}\phi = \nu\Delta\phi$

DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Symmetry-preserving regularization modeling

We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

that conserve the following inviscid invariants

- Kinetic energy : (u, u)
- Enstrophy (in 2D) : (ω, ω)
- Helicity (in 3D) : (ω, u)

DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Symmetry-preserving regularization modeling

We consider smooth approximations (regularizations) of the nonlinearity,

$$\partial_t u_{\epsilon} + \widetilde{\mathcal{C}}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon}$$

that conserve the following inviscid invariants

- Kinetic energy : (u, u)
- Enstrophy (in 2D) : (ω, ω)
- Helicity (in 3D) : (ω, u)

The **approximate convective operator** must **preserve** the basic **symmetry** properties:

$$\begin{aligned} (\mathcal{C}(u, \mathbf{v}), \ \mathbf{w}) &= -\left(\mathcal{C}(u, \ \mathbf{w}), \mathbf{v}\right) \\ (\mathcal{C}(u, \mathbf{v}), \Delta \mathbf{v}) &= \left(\mathcal{C}(u, \Delta \mathbf{v}), \mathbf{v}\right) & \text{ in 2D} \end{aligned}$$

Finally

$$\mathcal{C}_{4}^{\gamma}(u,v) = \frac{1}{2}\left(\left(\mathcal{C}_{4} + \mathcal{C}_{6}\right) + \gamma(\mathcal{C}_{4} - \mathcal{C}_{6})\right)(u,v)$$

where \mathcal{C}_4 and \mathcal{C}_6 read

$$C_{4}(u, v) = C(\bar{u}, \bar{v}) + \overline{C(\bar{u}, v')} + \overline{C(u', \bar{v})}$$
$$C_{6}(u, v) = C(\bar{u}, \bar{v}) + C(\bar{u}, v') + C(u', \bar{v}) + \overline{C(u', v')}$$

Taking $\gamma = 1$ we obtain the C_4 approximation⁰,

$$\partial_t u_\epsilon + \mathcal{C}_4(u_\epsilon, u_\epsilon) = \mathcal{D}(u_\epsilon) - \nabla p_\epsilon$$

in which the convective term in smoothed according to:

$$\mathcal{C}_4(u,v) = \mathcal{C}(\bar{u},\bar{v}) + \overline{\mathcal{C}(\bar{u},v')} + \overline{\mathcal{C}(u',\bar{v})}$$

where $u' = u - \bar{u}$ and $C_4(u, v) = C(u, v) + O(\epsilon^4)$ for any symmetric filter.

⁰Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008

Two main drawbacks:

- Additional hump in the tail of the energy spectrum
- For very coarse meshes, the damping factor can take very small values

How do we adress it?

Two main drawbacks:

- Additional hump in the tail of the energy spectrum
- For very coarse meshes, the damping factor can take very small values

How do we adress it?

Answer: Restoring the galilean invariance with an hyperviscosity effect.

The \mathcal{C}_4^γ regularization

$$\partial_t u_{\epsilon} + \mathcal{C}_4^{\gamma}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}(u_{\epsilon}) - \nabla p_{\epsilon} \; ; \quad \nabla \cdot u_{\epsilon} = 0$$

preserves all the invariant transformations of the original NS equations, **except the Galilean transformation**. To restore it, the time-derivative, $\partial_t u_{\epsilon}$, needs to be replaced by the following fourth-order approximation:

$$(\partial_t)_4^{\gamma} u_{\epsilon} = \partial_t (u_{\epsilon} - 1/2(1+\gamma)u_{\epsilon}'') = \mathcal{G}_4^{\gamma}(\partial_t u_{\epsilon}),$$

Since $(\mathcal{G}_4^{\gamma})^{-1}(\phi) \approx 2\phi - \mathcal{G}_4^{\gamma}(\phi) + \mathcal{O}(\epsilon^6)$, an energetically almost equivalent set of equations can be derived:

$$\partial_t u_{\epsilon} + \mathcal{C}_4^{\gamma}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}_4^{\gamma} u_{\epsilon} - \nabla p_{\epsilon} \; ; \quad \nabla \cdot u_{\epsilon} = 0$$

Compared with the C_4^{γ} regularization, the $\{CD\}_4^{\gamma}$ equations reinforce the dissipation by means of the hyperviscosity term

 $\mathcal{D}_4^{\gamma} u = \mathcal{D} u + 1/2(1+\gamma)(\mathcal{D} u')'$

$$\partial_t u_{\epsilon} + \mathcal{C}_4^{\gamma}(u_{\epsilon}, u_{\epsilon}) = \mathcal{D}_4^{\gamma} u_{\epsilon} - \nabla p_{\epsilon} \; ; \quad \nabla \cdot u_{\epsilon} = 0$$

Compared with the C_4^{γ} regularization, the $\{CD\}_4^{\gamma}$ equations reinforce the dissipation by means of the hyperviscosity term

 $\mathcal{D}_4^{\gamma} u = \mathcal{D} u + 1/2(1+\gamma)(\mathcal{D} u')'$

Recalling that $u' = -(\epsilon^2/24)\Delta u + O(\epsilon^4)$, the additional dissipation to the kinetic energy is approximately given by

$$arepsilon^{reg} pprox -rac{1}{2}(1+\gamma)\left(rac{\epsilon^2}{24}
ight)^2 \left(\Delta u_\epsilon, \Delta^2 u_\epsilon
ight)$$

The spectral representation is

$$\mathcal{C}_{4}^{\gamma}(u,v)_{k} = i \Pi(k) \sum_{p+q=k} f_{4}^{\gamma}\left(\widehat{g}_{k}, \widehat{g}_{p}, \widehat{g}_{q}\right) \widehat{u}_{p} q \widehat{v}_{q}$$

 $\mathcal{D}_4^{\gamma} u_k = h_4^{\gamma}(\widehat{g}_k) \nu |k|^2 \widehat{u}_k$

so the diffusive term is multiplied by

$$h_4^\gamma(\widehat{g}_k) = 1 + \widetilde{\gamma}(1 - \widehat{g}_k)^2$$

where $h_4 \geq 1$.

Taking the curl of momentum equation the **vorticity transport** equation follows

$$\partial_t \omega + \mathcal{C}(u, \omega) = \mathcal{C}(\omega, u) + \mathcal{D}(\omega)$$

¹F.X. Trias *et al.* **Computers&Fluids**, 39:1815-1831, 2010

Taking the curl of momentum equation the **vorticity transport** equation follows

$$\partial_t \omega + \mathcal{C}(u, \omega) = \mathcal{C}(\omega, u) + \mathcal{D}(\omega)$$

Let us now consider **periodic boundary conditions**. Then, the **enstrophy equation**:

$$\frac{1}{2}\frac{d}{dt}(\omega,\omega) = (\omega,\mathcal{C}(\omega,u)) - \nu (\nabla \omega,\nabla \omega)$$

¹F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010

Taking the curl of momentum equation the **vorticity transport** equation follows

$$\partial_t \omega + \mathcal{C}(u, \omega) = \mathcal{C}(\omega, u) + \mathcal{D}(\omega)$$

Let us now consider **periodic boundary conditions**. Then, the **enstrophy equation**:

$$\frac{1}{2}\frac{d}{dt}(\omega,\omega) = (\omega,\mathcal{C}(\omega,u)) - \nu \left(\nabla \omega,\nabla \omega\right)$$

Unless the grid is fine enough, convection dominates diffusion:

$(\omega, \mathcal{C}(\omega, u)) > \nu (\nabla \omega, \nabla \omega)$

¹F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
000000		000	0●00	00000	00000000	000000
Stopping the vortex-stretching						

In order to prevent local intensification of vorticity, dissipation must dominate the vortex-stretching term at the smallest grid scale.

$$\frac{\hat{\omega}_{k_{c}} \cdot \mathcal{C}_{4}^{\gamma}(\omega, u)_{k_{c}}^{*} + \mathcal{C}_{4}^{\gamma}(\omega, u)_{k_{c}} \cdot \hat{\omega}_{k_{c}}^{*}}{2\hat{\omega}_{k_{c}} \cdot \hat{\omega}_{k_{c}}^{*}} \leq h_{4}^{\gamma}\left(\hat{g}_{k}\right)\nu k_{c}^{2}$$

Very difficult to compute...

 DNS
 Regularization
 Hyperviscosity
 Vortex-stretching
 Parameters
 First results
 Conclusions

 Stopping the vortex-stretching
 0000
 00000
 00000
 00000
 000000

We want that the triadic interactions at the smallest scale be independent of the interacting pairs

 $f_4^{\gamma}(\widehat{g}_{k_c},\widehat{g}_p,\widehat{g}_q)\approx f_4^{\gamma}(\widehat{g}_{k_c}).$

So the overall damping effect at the smallest grid scale is

 $H_4(\widehat{g}_{k_c}) = f_4^{\gamma}(\widehat{g}_{k_c}) / \frac{h_4^{\gamma}}{(\widehat{g}_{k_c})}$

with the crucial condition that $0 < H_4(\hat{g}_{k_c}) \le 1$. Then...

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
000000	0000	000	000●	00000	00000000	
Stop	ping the v	vortex-stre	etching			

Then... we have a regularization model with two parameters:

- overall damping $H_4(\hat{g}_{k_c})$.
- ullet gamma γ

How can we deal with them?

We can express $H_4(\hat{g}_{k_c})$, as a function of the invariants R and Q of the strain tensor, $S(u) = 1/2(\nabla u + \nabla u^T)$. where

$$R = -1/3tr(S^3) = -det(S) = -\lambda_1\lambda_2\lambda_3$$

$$Q = -1/2tr(S^2) = -1/2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)$$

The diffusive term can be bounded by its largest eigenvalue

$$(
abla \omega,
abla \omega) = - \left(\omega, \Delta \omega
ight) \leq - \lambda_\Delta \left(\omega, \omega
ight),$$

Finally

$$H_4(\widehat{g}_{k_c}) = \min\left\{
u \lambda_\Delta rac{Q}{R^+}, 1
ight\}$$

where $\mathbf{R}^+ = max\{\mathbf{R}, \mathbf{0}\}$

Main features of the model:

- Lower bound for $H_4(\hat{g}_{k_c})$
- It automatically switches off when *h* approaches to the smallest scale in a turbulent flow
- It automatically switches off for laminar flows (no vortex-stretching) and 2D flows
- It automatically switches off in the wall

DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions 0000 0000 0000000 0000000 0000000 0000000

• We assume that the smallest grid scale $k_c = \pi/h$ lies within the inertial range for a classical Kolmogorov energy spectrum

$$E(k) = C_K \varepsilon^{2/3} k^{-5/3}$$

The total dissipation for $k_T \le k \le k_c$ can be approximated by the contribution of the following two terms

$$\mathcal{D}_{\nu} \equiv
u \int_{k_{T}}^{k_{c}} k^{2} E(k) dk,$$

 $\mathcal{D}_{\nu}^{\prime\prime} \equiv
u \int_{k_{T}}^{k_{c}} k^{4} \alpha^{4} E(k) dk,$

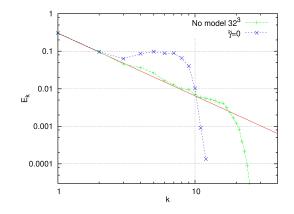
where \mathcal{D}_{ν} is the physical viscous dissipation and $\mathcal{D}_{\nu}^{''}$ is the additional dissipation introduced by the hyperviscosity term, $(\mathcal{D}u')'$.

- We assume that $\widetilde{H}_4 = \mathcal{O}(H_4(\widehat{g}_{k_c}))$
- We can bound the ratio R^+/Q by Q and hence \tilde{H}_4
- We can compute approximately the invariant Q with Kolmogorov spectrum

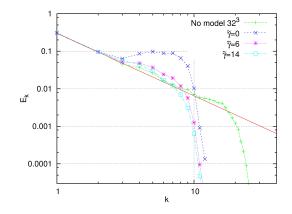
Then

$$\tilde{\gamma} \gtrsim 4 \left\{ 8C_{K}^{-3/2} - \left(1 - \left(\frac{k_{T}}{k_{c}}\right)^{4/3}\right) \right\} \approx 4 \left(8C_{K}^{-3/2} - 1\right)$$

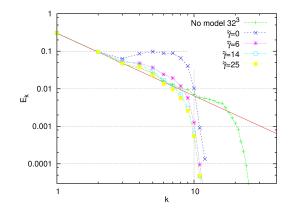
Hence, for a Kolmogorov constant of $C_K \approx 1.58$ it leads to a lower limit of $\tilde{\gamma} \approx 12.1$ or ($\gamma \approx 23.2$)



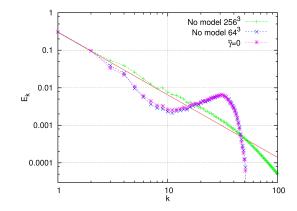
Energy spectra at $Re_{\lambda} \approx 72$ for different values of $\tilde{\gamma}$ from 0 up to 30



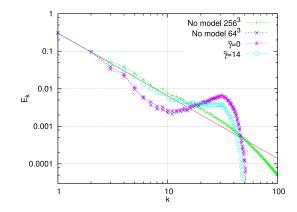
Energy spectra at $Re_{\lambda} \approx 72$ for different values of $\tilde{\gamma}$ from 0 up to 30



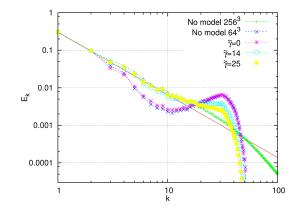
Energy spectra at $Re_{\lambda} \approx 72$ for different values of $\tilde{\gamma}$ from 0 up to 30



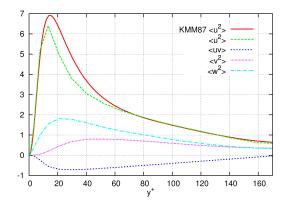
Energy spectra at $Re_{\lambda} \approx 202$ for different values of $\tilde{\gamma}$ from 0 up to 30



Energy spectra at $Re_{\lambda} \approx 202$ for different values of $\tilde{\gamma}$ from 0 up to 30

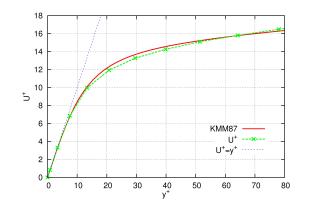


Energy spectra at $Re_{\lambda} \approx 202$ for different values of $\tilde{\gamma}$ from 0 up to 30



Grid size 32x32x32. Some turbulent statistics

Channel flow $Re_{\tau} = 180$



Grid size 32x32x32. Mean streamwise velocity profile

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
000000	0000	000	0000	00000	00000000	●00000
Conc	lusions					

The numerical results illustrate the potential of {CD}^γ₄ regularization as a parameter-free turbulence model.

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
000000		000	0000	00000	00000000	●00000
Conc	lusions					

- The numerical results illustrate the potential of {CD}^γ₄ regularization as a parameter-free turbulence model.
- **Robustnest**. It preserves the symmetry properties and therefore, the solution cannot blow up even for very coarse meshes.

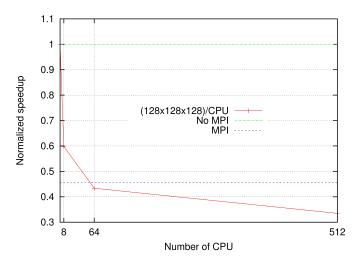
- $\{CD\}^{\gamma}_{4}$ regularization of channel flow
- Wind farm simulation

DNS	Regularization	Hyperviscosity	Vortex-stretching	Parameters	First results	Conclusions
000000	0000	000	0000	00000	0000000	00000

Thank you for you attention

- Roel Verstappen, "On restraining the production of small scales of motion in a turbulent channel flow", Computers & Fluids, 37 (7): 887-897, 2008
- F. X. Trias *et al.*, "*Parameter-free symmetry-preserving regularization modeling of a turbulent differentially heated cavity*", Computers & Fluids, 39:1815-1831, 2010.
- F. X. Trias and R.W.C.P. Verstappen, "On the construction of discrete filters for symmetry-preserving regularization models", Computers & Fluids, 40:139-148, 2011.

DNS 000000	Regularization	Hyperviscosity 000	Vortex-stretching 0000	Parameters 00000	First results 00000000	Conclusions
Weal	<pre> Scaling </pre>					



Hence

$$\mathcal{D}_{\nu} + \tilde{\gamma} \mathcal{D}_{\nu}^{\prime\prime} = \frac{3\nu}{16} C_{\kappa} \varepsilon^{2/3} \left\{ \left(4 + \tilde{\gamma} \alpha^4 k_c^4 \right) k_c^{4/3} - \left(4 + \tilde{\gamma} \alpha^4 k_T^4 \right) k_T^{4/3} \right\}$$

where $\tilde{\gamma} = 1/2(1+\gamma)$. At the tail of the spectrum

$$ilde{H}_4 pprox rac{\mathcal{D}_
u + ilde{\gamma} \mathcal{D}_
u''}{arepsilon}$$

represents the ratio between the total dissipation and the energy transferred from scales larger than k_T