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DNS of turbulent incompressible flows

Main features of the DNS
code:

Pseudo-spectral method

3/2 rule de-aliasing
technique

Structured non-staggered
grids

Fully-explicit
second-order
time-integration method

MPI parallelization

Offshore wind farm

Spectrally-consistent regularization modelling
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Towards wind farm simulation

Steps to final DNS:

Forced homogeneus isotropic turbulence

Channel flow

Atmospheric boundary layer

Wind farm simulation
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Forced homogoneus isotropic turbulent square box up to
Reλ ≈ 202

Forced energy spectrum
L = 2π
Reλ ≈ 72, 202
ν ≈ 0.003,0.0004
E1,E2 fixed energies
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Channel flow at Reτ = 180

h = 2δ = 2.0
Reτ = 180
U0 = 1.0
Re0 = 3300

Spectrally-consistent regularization modelling
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Strong Scaling
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Governing equations

Incompressible Navier-Stokes equations:

∇ · u = 0
∂tu + C(u, u) = Du −∇p

where the nonlinear convective term is given by

C(u, φ) = (u · ∇)φ

and the linear dissipative term is given by

Dφ = ν∆φ

Spectrally-consistent regularization modelling
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Symmetry-preserving regularization modeling
We consider smooth approximations (regularizations) of the
nonlinearity,

∂tuε + C̃(uε, uε) = D(uε)−∇pε

that conserve the following inviscid invariants
Kinetic energy : (u, u)

Enstrophy (in 2D) : (ω, ω)

Helicity (in 3D) : (ω, u)

The approximate convective operator must preserve the basic
symmetry properties:

(C(u, v), w) = − (C(u, w), v)

(C(u, v),∆v) = (C(u,∆v), v) in 2D

Spectrally-consistent regularization modelling
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Symmetry-preserving regularization models

Finally

Cγ4 (u, v) =
1
2 ((C4 + C6) + γ(C4 −C6)) (u, v)

where C4 and C6 read

C4(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄)

C6(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄) + C(u′, v ′)

Spectrally-consistent regularization modelling
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Symmetry-preserving regularization models

Taking γ = 1 we obtain the C4 approximation0,

∂tuε + C4(uε, uε) = D(uε)−∇pε
in which the convective term in smoothed according to:

C4(u, v) = C(ū, v̄) + C(ū, v ′) + C(u′, v̄)

where u′ = u − ū and C4(u, v) = C(u, v) +O(ε4) for any
symmetric filter.

0Roel Verstappen, Computers & Fluids, 37 (7): 887-897, 2008
Spectrally-consistent regularization modelling
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Symmetry-preserving regularization models

Two main drawbacks:

Additional hump in the tail of the energy spectrum
For very coarse meshes, the damping factor can take very
small values

How do we adress it?

Answer: Restoring the galilean invariance with an hyperviscosity
effect.

Spectrally-consistent regularization modelling
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Restoring the Galilean invariance: hyperviscosity effect

The Cγ4 regularization

∂tuε + Cγ4 (uε, uε) = D(uε)−∇pε ; ∇ · uε = 0

preserves all the invariant transformations of the original NS
equations, except the Galilean transformation. To restore it,
the time-derivative, ∂tuε, needs to be replaced by the following
fourth-order approximation:

(∂t)γ4uε = ∂t(uε − 1/2(1 + γ)u′′ε ) = Gγ4 (∂tuε),

Since (Gγ4 )−1(φ) ≈ 2φ−Gγ4 (φ) +O(ε6), an energetically almost
equivalent set of equations can be derived:

Spectrally-consistent regularization modelling
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Restoring the Galilean invariance: hyperviscosity effect

∂tuε + Cγ4 (uε, uε) = Dγ4 uε −∇pε ; ∇ · uε = 0

Compared with the Cγ4 regularization, the {CD}γ4 equations
reinforce the dissipation by means of the hyperviscosity term

Dγ4 u = Du + 1/2(1 + γ)(Du′)′

Recalling that u′ = −(ε2/24)∆u +O(ε4), the additional
dissipation to the kinetic energy is approximately given by

εreg ≈ −1
2(1 + γ)

(
ε2

24

)2 (
∆uε,∆2uε

)
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Restoring the Galilean invariance: hyperviscosity effect

The spectral representation is

Cγ4 (u, v)k = iΠ(k)
∑

p+q=k
f γ4 (ĝk , ĝp, ĝq) ûpqv̂q

Dγ4 uk = hγ4 (ĝk)ν|k|2ûk

so the diffusive term is multiplied by

hγ4 (ĝk) = 1 + γ̃(1− ĝk)2

where h4 ≥ 1.
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Stopping the vortex-stretching1

Taking the curl of momentum equation the vorticity transport
equation follows

∂tω + C (u, ω) = C (ω, u) +D(ω)

Let us now consider periodic boundary conditions. Then, the
enstrophy equation:

1
2

d
dt (ω, ω) = (ω, C(ω, u)) − ν (∇ω,∇ω)

Unless the grid is fine enough, convection dominates diffusion:

(ω, C(ω, u)) > ν (∇ω,∇ω)

1F.X. Trias et al. Computers&Fluids, 39:1815-1831, 2010
Spectrally-consistent regularization modelling
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Stopping the vortex-stretching

In order to prevent local intensification of vorticity, dissipation must
dominate the vortex-stretching term at the smallest grid scale.

ω̂kc · C
γ
4 (ω, u)

∗
kc

+ Cγ4 (ω, u)kc
· ω̂∗kc

2ω̂kc · ω̂∗kc

≤ hγ4 (ĝk) νk2
c

Very difficult to compute...

Spectrally-consistent regularization modelling
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Stopping the vortex-stretching

We want that the triadic interactions at the smallest scale be
independent of the interacting pairs

f γ4 (ĝkc , ĝp, ĝq) ≈ f γ4 (ĝkc ).

So the overall damping effect at the smallest grid scale is

H4(ĝkc ) = f γ4 (ĝkc )/hγ4 (ĝkc )

with the crucial condition that 0 < H4(ĝkc ) ≤ 1.
Then...

Spectrally-consistent regularization modelling
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Stopping the vortex-stretching

Then... we have a regularization model with two parameters:

overall damping H4(ĝkc ).
gamma γ

How can we deal with them?

Spectrally-consistent regularization modelling
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On the determination of H4(ĝkc)

We can express H4(ĝkc ), as a function of the invariants R and Q of
the strain tensor, S(u) = 1/2(∇u +∇uT ).
where

R = −1/3tr(S3) = −det(S) = −λ1λ2λ3

Q = −1/2tr(S2) = −1/2(λ2
1 + λ2

2 + λ2
3)

Spectrally-consistent regularization modelling
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On the determination of H4(ĝkc)

The diffusive term can be bounded by its largest eigenvalue

(∇ω,∇ω) = − (ω,∆ω) ≤ −λ∆ (ω, ω) ,

Finally

H4(ĝkc ) = min
{
νλ∆

Q
R+

, 1
}

where R+ = max{R, 0}

Spectrally-consistent regularization modelling
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On the determination of H4(ĝkc)

Main features of the model:
Lower bound for H4(ĝkc )

It automatically switches off when h approaches to the
smallest scale in a turbulent flow
It automatically switches off for laminar flows (no
vortex-stretching) and 2D flows
It automatically switches off in the wall

Spectrally-consistent regularization modelling
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On the determination of γ

We assume that the smallest grid scale kc = π/h lies within
the inertial range for a classical Kolmogorov energy spectrum

E (k) = CKε
2/3k−5/3

The total dissipation for kT ≤ k ≤ kc can be approximated by the
contribution of the following two terms

Dν ≡ ν
∫ kc

kT
k2E (k)dk,

D′′
ν ≡ ν

∫ kc

kT
k4α4E (k)dk,

where Dν is the physical viscous dissipation and D′′
ν is the

additional dissipation introduced by the hyperviscosity term,
(Du′)′.

Spectrally-consistent regularization modelling
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On the determination of γ

We assume that H̃4 = O(H4(ĝkc ))

We can bound the ratio R+/Q by Q and hence H̃4

We can compute approximately the invariant Q with
Kolmogorov spectrum

Then

γ̃ & 4
{

8C−3/2
K −

(
1−

(kT
kc

)4/3)}
≈ 4

(
8C−3/2

K − 1
)

Hence, for a Kolmogorov constant of CK ≈ 1.58 it leads to a lower
limit of γ̃ ≈ 12.1 or (γ ≈ 23.2)
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Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 72 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 72 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 72 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 202 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 202 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Test-case: Forced homogeneus isotropic turbulence

Energy spectra at Reλ ≈ 202 for different values of γ̃ from 0 up to 30

Spectrally-consistent regularization modelling



DNS Regularization Hyperviscosity Vortex-stretching Parameters First results Conclusions

Channel flow Reτ = 180

Grid size 32x32x32. Some turbulent statistics
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Channel flow Reτ = 180

Grid size 32x32x32. Mean streamwise velocity profile
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Conclusions

The numerical results illustrate the potential of {CD}γ4
regularization as a parameter-free turbulence model.

Robustnest. It preserves the symmetry properties and
therefore, the solution cannot blow up even for very coarse
meshes.
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Conclusions and Future Research

{CD}γ4 regularization of channel flow

Wind farm simulation
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Thank you for you attention
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Further reading about C4 regularization

Roel Verstappen, “On restraining the production of small
scales of motion in a turbulent channel flow”, Computers &
Fluids, 37 (7): 887-897, 2008

F. X. Trias et al., “Parameter-free symmetry-preserving
regularization modeling of a turbulent differentially heated
cavity”, Computers & Fluids, 39:1815-1831, 2010.

F. X. Trias and R.W.C.P. Verstappen, “On the construction of
discrete filters for symmetry-preserving regularization models”,
Computers & Fluids, 40:139-148, 2011.
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Weak Scaling
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On the determination of γ

Hence

Dν + γ̃D′′
ν =

3ν
16 CKε

2/3
{(

4 + γ̃α4k4
c

)
k4/3

c −
(

4 + γ̃α4k4
T

)
k4/3

T

}
where γ̃ = 1/2(1 + γ). At the tail of the spectrum

H̃4 ≈
Dν + γ̃D′′

ν

ε

represents the ratio between the total dissipation and the energy
transferred from scales larger than kT

Spectrally-consistent regularization modelling


	DNS
	Regularization
	Hyperviscosity
	Vortex-stretching
	Parameters
	First results
	Conclusions

