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Abstract DNS results at Ra = 10t and Pr = 0.71

Since direct numerical simulations (DNS) of buoyancy-driven flows cannot be com-
puted at high Rayleigh numbers (Ra), a dynamically less complex mathematical
formulation Is sought. In the quest for such a formulation, we consider regular- e B o B
Izations (smooth approximations) of the nonlinear convective term: they basically S B e Mesh size: 128 x 682 x 1278

alter the convective terms to reduce the production of small scales of motion. In 0 W o B B e Computing Time: ~ 3 months - 256 CPUs
this way, the new set of partial differential equations are dynamically less complex .1 g o 4M_order symmetry-preserving discretization
than the original Navier-Stokes (NS) equations, and therefore more amenable to el 7 | | oA, — 4

be numerically solved. Here we propose to preserve the symmetry and conserva- " |

tion properties of the convective terms exactly. This requirement yields a family of ST Complexity of the flow

symmetry-preserving regularization models. In this work, the performance of the |
method Is tested for a turbulent differentially heated cavity (DHC).

Some details about DNS simulations :

e Boundary layers
e Stratified cavity core
e Internal waves

Recirculation ar
DHC - Problem definition e Recirculation areas
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Boundary conditions:

PERIODIC @ Isothermal vertical walls C4 results for a DHC at Ra = 1019
@ Adiabatic horizontal walls

@ Periodic boundary conditions in X
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Dimensionless governing numbers: 2 P a2 2 - o | B a2 o -
DNS — |

Ra = (BATL;g)/(av)

°r =v/a

Height aspect ratio A, = L, /Ly

Depth aspect ratio Ay = Ly /Ly
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C4-regulatization modeling of turbulence Averaged vertical velocity and temperature profiles at the horizontal mid-height plane at Ra = 10%°.

Even for a very coarse 8 x 13 x 30 grid reasonable results are being obtained!
The incompressible NS equations form an excellent mathematical model for turbu-

lent flows. In primitive variables they read
&u +C(u,u) = PrRaY2Au —Vp+f; V.u=0
oT +C(u,T) = Ra 1/?AT Challenging Cs-regulatization method

where Ra and Pr are the Rayleigh and Prandtl numbers and the non-linear convec-
tive term is defined by C(u,v) = (u- V)v

—> Results for different grids show the robustness of the method.

Mesh independence analysis Performance at very high Ra

Since the full energy spectrum, i.e. DNS, cannot be computed, a dynamically less
complex mathematical formulation is sought. Here, we consider the C, approxima- ] 100000

tion: the convective term is replaced by the following O(e*)-accurate smooth approx- > om0 oo e T i
Imation C4(U,V) given by

Ca(u,v) =C(U,V)+C(u,v')+C(u’,V)
Note that here the prime indicates the residual of the filter, e.g. u’ = u — u, which

can be explicitly evaluated, and () represents a normalized self-adjoint linear filter
with filter length e. Therefore, the governing equations result to L Remaeec,

atu _|_ C4 (U 7 U) — PrR a—l / 2 Au L vp _|_ f ’ v ‘U = O 0 o|.2 oi4 OI.6 . OI.8 |1 I 1e+08 1e+09 1eJIrlO 1e4l-11 1e4|rlz 16:;3 1eJIrl4 1eJIrlS 1eJIrlG 1eJIrl7 1le+18
—1/2
8tT + C4(U ; T) = Ra / AT Nusselt number and centreline stratification for 50 ran- Meshes have been generated with the criterion of keep-

: : : : : . domly generated coarse grids at Ra = 10%°. Ing the same number of points in the boundary layer.
Note that the C4 approximation is also a skew-symmetric operator like the original _ . .
. . . o Cs-method predicts good results irrespec- Good agreement with a 2/7 power-law scal-
convective operator. Hence, the same Iinviscid invariants -kinetic energy, enstrophy _ _ .
. .. tive of the meshing! iIng of Nusselt!
In 2D and helicity- are preserved.
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Energy flux equation for the symmetry-preserving regularization resembles the NS
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