
Polytechnical University of Catalonia

A project for the title of

Industrial Engineer

Study of an efficient parallel
implementation of a CFD code based

on algebraic operators

author

Xavier Álvarez Farré

supervised by
Dr. A. Oliva, Dr. F. X. Trias and Dr. R. Borrell

June 16, 2016

Abstract

The present project is about developing, implementing and evaluating an efficient par-

allel CFD code based on algebraic operators. The principal algebraic kernels required

are: i) the dot product, ii) the generalized vector addition, iii) the sparse matrix-vector

product. The code developed for this project must meet three requirements to suit

current needs. Namely, apart from being modular in order to be suitable for different ap-

plications and engineering problems, it must also be efficient and portable for different

parallel computing systems.

Acknowledgement

The completion of this project could not have been possible without the generous sup-

port of so many people whose names may not all be mentioned. Their contributions are

sincerely appreciated and gratefully acknowledged. However, I would like to express

my deep appreciation and indebtedness to:

All the members of the CTTC (Heat and Mass Transfer Technological Center) for their

help and assistance along this year and also for the great moments like the coffee

breaks, the weekend getaways and the summer beers and barbecues.

Dr. Asensi Oliva for betting on me and allowing me in the CTTC.

Dr. Ricard Borrell and Dr. Xavier Trias for guiding me through this undertaking and for

the knowledge and motivation they have taught to me.

My friends and specially Mr. Javi Arribas for countless moments together from eternal

nights studying at the library to unforgettable trips.

Ms. Elisabeth Pino for her endless love and support. Thanks for making me look at the

beautiful side of life.

My family, specially my mother for her unconditional love and sacrifice and my father for

his overcoming spirit. Thanks for giving me the best life and education I could wish.

“The world is a fine place and worth fighting for.”

- Ernest Hemingway

1

Nomenclature

Symbol Definition

Basic Nomenclature
u Bold font is used to represent a vector.
û The small hat is used to represent a dimensionless parameter.
u The over-line is used to represent a matrix.
u̇ The dot is used to represent a temporal derivative.

Numerical Analysis Nomenclature
ϕn Super-index of time. Value of ϕ at present time.
ϕn+1 Super-index of time. Value of ϕ at later time.
ϕn−1 Super-index of time. Value of ϕ at earlier time.
ϕi Spatial sub-index. Value of ϕ in the control volume i.
ϕ f Spatial sub-index. Value of ϕ at the control surface f .
ϕnb Spatial sub-index. Value of ϕ at the neighbor node nb.
δ Spatial increment.
∆t Increment of time.
S f Surface f .

Mathematical Nomenclature
∂/∂t Partial derivative respect to time.
∇ Gradient.
∇· Divergence.
∇2 Laplace operator.
n̂ Unit vector normal to surface.∑

f∈F(c)
Summation for all the surfaces on the control volume.

2

Symbol Definition Units

Fluid Dynamics Nomenclature
Φ Generic extensive variable.
ϕ Generic intensive variable.
m Mass. [kg]
ρ Density. [kg/m3]
µ Dynamic viscosity. [Pas]
ν Cinematic viscosity. [m2/s]
λ Thermal conductivity. [W/mK]
α Thermal diffusivity. [m2/s]
β Thermal expansion coefficient. [K−1]
cP Specific heat capacity at a constant pressure. [J/kgK]
u Velocity. [m/s]
g Gravity. [m/s2]
T Temperature. [K]
p Pressure. [Pa]
t Time. [t]
Q̇ Energy source. [W/m3]
q̇ Flow rate. [m3/s]
Γ Generic diffusive factor.

3

Contents

Acknowledgement 1

Nomenclature 2

1 Introduction 18

1.1 Object . 20

1.2 Motivation . 20

1.3 Scope . 23

1.4 Basic Specifications . 23

2 Previous Concepts 25

2.1 Sparse Matrices . 25

2.1.1 COO, Coordinate Format . 27

4

CONTENTS

2.1.2 CRS, Compressed Row Storage 28

2.1.3 CDS, Compressed Diagonal Storage 29

2.1.4 sparse xlf 2d, Sparse XLF Two-Dimensional Structure 30

2.2 Open Multi-Processing for Shared Memory Systems 32

2.2.1 The Parallel Region . 33

2.2.2 OpenMP Clauses . 35

2.2.3 Manual Work-Sharing . 40

2.3 MPI, Message Passing Interface for Distributed Memory Systems 41

2.3.1 The MPI Groups and Communicators 43

2.3.2 The MPI Send & Receive . 44

2.3.3 The MPI Reduce . 46

2.3.4 The MPI Barrier . 47

2.4 Hybrid Parallel Programming . 47

3 Mathematical Formulation 49

3.1 Reynolds Transport Theorem . 50

5

CONTENTS

3.1.1 Derivative of the Reynolds Transport Theorem 52

3.2 Conservation Laws . 55

3.3 Convection-Diffusion Equation . 56

3.4 Navier-Stokes Equations . 57

3.4.1 Continuity . 58

3.4.2 Momentum . 58

3.4.3 Energy . 59

3.5 Governing Equations . 60

3.5.1 Natural Convection . 60

3.5.2 Forced Convection . 61

3.6 Non-Dimensionalization . 61

3.6.1 Dimensionless Governing Equations 62

3.6.2 Forced Convection . 63

4 Numerical Solution of the Governing Equations 65

4.1 Grids . 65

6

CONTENTS

4.2 Discretization . 67

4.2.1 Temporal Discretization . 67

4.2.2 Solution of the Momentum Equation 69

4.2.3 Analysis of the Convective Term 73

4.2.4 Analysis of the Diffusive Term . 74

4.2.5 Operator-Based Formulation . 74

5 Abstract Modelling of Hardware 77

5.1 Central Processing Unit . 77

5.2 Memory Hierarchy . 79

5.3 Throughput . 81

5.3.1 Theoretical Peak Performance, TPP 82

5.3.2 Theoretical Maximum Performance, TMP 83

5.3.3 Instruction Pipelining . 83

5.3.4 Fused Multiply-Add . 90

5.3.5 Single Instruction Multiple Data 94

7

CONTENTS

5.3.6 Theoretical Bounded Performance, TBP 99

5.4 Conclusions . 102

6 XLF, the Linear Algebra Library 104

6.1 The XLF File Structure . 104

6.2 Implementation of Operators . 107

6.2.1 Dot Product . 107

6.2.2 Generalized Vector Addition . 108

6.2.3 Sparse Matrix-Vector Product . 109

6.3 Operator’s Computational Cost . 111

6.4 Developement and Performance Evaluation 113

6.4.1 Stage 01: Sequential Optimization 114

6.4.2 Stage 02: Shared Memory Parallelization 121

6.4.3 Stage 03: Distributed Memory Parallelization 128

7 Environmental Impact Analysis 135

7.1 Preliminary Study and Draft Project . 135

8

CONTENTS

7.2 Memory Writing . 136

7.3 Construction Phase . 136

7.4 Operational Phase . 137

7.5 Decommissioning . 137

8 Budget Summary 138

8.1 Cost Estimate . 138

9 Project Planning 140

9.1 List of Tasks . 140

9.2 Gantt Chart . 145

10 Conclusions 147

10.1 General Conclusions . 147

10.2 Future Work . 149

Appendices 150

A Solved Cases 151

9

CONTENTS

A.1 Smith-Hutton Case . 152

A.2 Driven Cavity Case . 156

A.3 Differentially Heated Cavity Case . 161

10

List of Figures

1.1 Accuracy vs Precision . 19

2.1 Sparse Matrix examples. 26

2.2 Scheme of a shared memory system. 32

2.3 Scheme of the OpenMP threading. 33

2.4 Scheme of OpenMP management of variables. 37

2.5 Scheme of a distributed memory system. 42

2.6 Scheme of a MPI process distribution. 42

2.7 Scheme of a hybrid task distribution. 48

3.1 Control volume and system for flow through an arbitrary, fixed control

volume. 52

11

LIST OF FIGURES

4.1 Examples of grids around an airfoil. 66

4.2 Different control volumes in a staggered grid. 67

5.1 Memory hierarchy scheme. 79

5.2 Instruction pipelining. 84

5.3 Study of pipeline. The benchmark results. 90

5.4 Study of FMA. The benchmark results. 94

5.5 Study of SIMD. Scheme of a SSE2 operation. 95

5.6 Study of SIMD. The benchmark results. 99

5.7 Application’s Performance vs Data Size. 101

6.1 File structure of the XLF library. 105

6.2 File structure of the XLF benchmark. 106

6.3 Cache reuse in sparse matrix-vector product. 112

6.4 Stage 01. Results of the dot product. 116

6.5 Stage 01. Results of the generalized vector addition. 118

6.6 Stage 01. Results of the sparse matrix-vector product. 120

12

LIST OF FIGURES

6.7 Stage 02. Results of the dot product. 124

6.8 Stage 02. Results of the generalized vector addition. 125

6.9 Stage 02. Results of the sparse matrix-vector product. 127

6.10 Stage 03. Results of the dot product. 130

6.11 Stage 03. Results of the sparse matrix-vector product. 131

6.12 Stage 03. Study of the Strong Scaling behavior. 133

6.13 Stage 03. Study of the Weak Scaling behavior. 133

9.1 List of Tasks. 141

9.2 Gantt Chart. 146

A.1 General schema of the Smith-Hutton problem. 152

A.2 Results for the Smith-Hutton problem. 153

A.3 Smith-Hutton. Plot for ρ/Γ = 10e1. 154

A.4 Smith-Hutton. Plot for ρ/Γ = 10e3. 154

A.5 Smith-Hutton. Plot for ρ/Γ = 10e6. 155

A.6 General schema of the driven cavity problem. 156

13

LIST OF FIGURES

A.7 Driven cavity. Plot for Re = 100. 157

A.8 Driven cavity. Plot for Re = 400. 157

A.9 Driven cavity. Plot for Re = 1000. 158

A.10 Driven cavity. Plot for Re = 3200. 158

A.11 Driven cavity. Plot for Re = 7500. 159

A.12 Driven cavity. Plot for Re = 10000. 159

A.13 Driven cavity. Capture in ParaView for Re = 10000. 160

A.14 General schema of the differentially heated cavity problem. 161

A.15 Differentially heated cavity plots. 162

14

List of Tables

2.1 Sparse matrix data structures summary. 27

2.2 COO data structure. 27

2.3 CRS data structure. 28

2.4 CDS data structure. 29

2.5 sparse xlf 2d data structure . 31

3.1 Navier-Stokes replacing parameters. 58

3.2 Definition of the non-dimensionalization parameters. 63

3.3 Definition of the non-dimensionalization parameters. 64

5.1 Characteristics of the available CPU. 78

5.2 Characteristics of the available main memory. 80

15

LIST OF TABLES

5.3 Study of pipelining. Theoretical maximum performance. 88

5.4 Study of pipeline. The benchmark results. 89

5.5 Study of FMA. Theoretical maximum performance. 91

5.6 Study of FMA. The benchmark results. 93

5.7 Study of SIMD. Theoretical maximum performance. 96

5.8 Study of SIMD. The benchmark results. 98

6.1 Computational cost of the operators. 112

6.2 Stage 01. Theoretical parameters of the operators. 115

6.3 Stage 01. Results of the dot product. 116

6.4 Stage 01. Results of the generalized vector addition. 117

6.5 Stage 01. Results of the sparse matrix-vector product. 119

6.6 Stage 02. Theoretical parameters of the operators. 122

6.7 Stage 02. Results of the dot product. 123

6.8 Stage 02. Results of the generalized vector addition. 125

6.9 Stage 02. Results of the sparse matrix-vector product. 126

16

LIST OF TABLES

6.10 Stage 03. Theoretical parameters of the operators. 129

6.11 Stage 03. Results of the dot product. 130

6.12 Stage 03. Results of the sparse matrix-vector product. 131

8.1 Cost Estimate. 138

17

Chapter 1

Introduction

Physics, in Ancient Greek, means knowledge of nature. Physics is a natural science

that involves the study of matter and its motion through space and time. Engineering is

the application of mathematics, empirical evidences and scientific knowledge in order

to research, improve or invent things. In order to describe a system or a phenomenon,

scientists and engineers design and use mathematical models.

Many of the engineering studies lead to mathematical models whose analytical resolu-

tion is unknown. The need to provide by the community of physicists and engineers,

a useful solution to these problems promotes the study and development of numeri-

cal methods and computing systems. Numerical analysis is the study of algorithms

or numerical methods able to obtain an approximate solution of complex mathematical

models. The fact that numerical methods calculate an approximate solution of the prob-

lem implies that there is always an associated error. The two main factors related to the

quality of the result obtained from the numerical analysis are accuracy and precision. In

one hand, better accuracy is obtained using a better mathematical model. On the other

hand, better precision is obtained using a better numerical method.

18

CHAPTER 1. INTRODUCTION

Figure 1.1: Accuracy vs Precision

The emergence of computers (machines capable of performing millions of simple binary

operations per second) boosted the use and development of numerical methods be-

cause together they allow to quickly perform huge mathematical calculations. Thereby

computers reduce the need for analytical calculations or experimental results for the

development of engineering projects; thermal loads, structural or financial calculations,

among others, are increasingly fast and accurate thanks to the constant evolution of

computers and numerical methods.

Gordon Moore, co-founder of Intel, predicted in 1965 [1] that every year the number of

transistors inside processors will double as well as computing power. This prediction

was called “Moore’s Law”. Later, Moore readjusted the magnitude of its prediction sev-

eral times but in essence it remained the same: computing progresses at a frantic pace.

The main drawback of this constant growth is that the energetic cost is no exception; it

also increases in almost the same magnitude.

The fact that the required electric power increases proportionally with computing ca-

pacity generates several constraints when performing numerical calculations; when a

project is carried out, it is necessary to decide the mathematical model and numeri-

cal method depending on the accuracy and precision desired and assess whether the

costs for calculating are worth it. At this point, the efficiency of the code implemented for

carrying out the simulation plays a key role: it is the only remaining factor which could

19

CHAPTER 1. INTRODUCTION

minimize the energetic cost of the computation. For this reason, the code should take

full advantage of the available computing resources.

1.1 Object

The object of this project is to implement an efficient parallel CFD code based on three

algebraic operators: dot product, generalized vector addition and sparse matrix-vector

product.

1.2 Motivation

One of the sciences most benefited by numerical analysis is fluid mechanics. The

Navier-Stokes equations describe the behavior of fluids and are considered the most

challenging equations of classical physics. The Computational Fluid Dynamics (CFD)

is responsible for solving, using a numerical method, the system of partial differential

equations mentioned above (Navier-Stokes) to try to understand the behavior of fluids

in various fields of knowledge such as: aeronautics, automotive, combustion, blood

flow, weather and many more. In an operator-based formulation, the solution of the

finite-volume discretization of Navier-Stokes equations involves three main algebraic

operators: i) the dot product, ii) the generalized vector addition, iii) the sparse matrix-

vector product. Hence developing a computational application with an algebraic kernel

able to perform these three operations is very meaningful. Furthermore, this computing

tool is very suitable not only for CFD applications, but also for every engineering problem

which requires solving partial differential equations that can be written in an operator-

based formulation, thus it is very convenient that codes are modular in order to be easily

implemented into different engineering applications.

20

CHAPTER 1. INTRODUCTION

The discretized Navier-Stokes system of equations results in a large system of simple

algebraic equations. This system could have millions, billions or even more equations

depending on the size of the problem. Such a large set of equations is impossible to

solve by a human but not by a computer: a current laptop is able to perform the order of

5.000.000.000 floating point operations per second. However, as demand for computing

power grows in the fields of science and engineering in order to solve more challenging

cases and to obtain more precise results, the computing power of a laptop is nowadays

considered tiny. Simultaneously, high performance computing (HPC) is becoming very

important. HPC most generally refers to the practice of aggregating computing power

in order to solve large problems efficiently, reliably and quickly. To achieve this, the HPC

relies on technologies such as parallel computing for developing computer clusters and

supercomputers. A supercomputer could become up to 1,000,000 times faster than a

laptop.

A powerful hardware is not the only requirement for a fast calculation; the efficiency of

the software must be taken into account too. Every advance in computing technologies

adds new features and instructions to computing systems which make it possible for

programmers to improve the efficiency of their codes despite those new features are

very complex and require a high level of computing and programming skills. Moreover,

although there are some standards in this industry, this new features and instructions

are not all the same from every manufacturer and architecture. For this reason, high

efficiency in software depends heavily on the features of the computing system used

such as its manufacturer, architecture, components and operative system among oth-

ers. The term portability referred to the software means that it is able to perform well in

many different platforms and architectures. To design a portable and efficient code is

usually hard since it must have implemented every function in the most efficient way for

each type of architecture of destiny.

There are some linear algebra standards already implemented in many libraries which

are efficient and optimized for particular systems. They contain lots of algebraic oper-

ators for all kind of applications. One of the best known is the Basic Linear Algebra

21

CHAPTER 1. INTRODUCTION

Subprograms (BLAS); BLAS is a specification that prescribes a set of low-level routines

for performing common linear algebra operations such as vector addition, scalar multi-

plication, dot products, linear combinations and matrix multiplication. Nowadays there

are a lot of different BLAS implementations, such as ATLAS, CBLAS and GOTOBLAS

among others. The CBLAS implementation is an interface between the Fortran BLAS

and C language and has been used in this project as reference for performance tests.

Most of the implementations of the BLAS are Open Source code libraries, that means

everybody can download, install, use and improve them freely. This fact allows pro-

grammers from all over the world to implement and optimize the BLAS for every existing

platform.

In conclusion, an algebraic library suitable for CFD problems should provide, at least,

the following algebraic operators:

• Dot Product,

• Generalized Vector Addition,

• Sparse Matrix-Vector Product,

and meet the following requirements:

• To be Modular,

• To be Portable,

• To be Efficient.

To design this library once and keep it updated and maintained would make it possi-

ble for other engineers to develop simulation tools without worry anymore about the

implementation of the algebraic operators.

22

CHAPTER 1. INTRODUCTION

1.3 Scope

The intended tasks for this project are:

• To study the physics and mathematics related to CFD laminar problems.

• To study the numerical methods that are required for solving a CFD problem.

• To write the discrete governing equations in an operator-based formulation.

• To study the computing system as an abstract object: black-box model.

• To study the different bottlenecks involved in computational science.

• To develop an efficient, parallel computational application able to perform the

three algebraic operators object of this project.

• To evaluate the efficiency and performance achieved with every developed oper-

ator.

1.4 Basic Specifications

The basic specifications for this project are:

• To discretize the governing equations in the forced convection scenario.

• To use two-dimensional Cartesian grids for the spatial discretizations.

• To program in C++ language.

• To use SIMD instructions for single core parallelization.

• To use OpenMP interface for shared memory parallelization.

23

CHAPTER 1. INTRODUCTION

• To use OpenMP+MPI interface for distributed memory parallelization.

• To evaluate the main-memory bounded performance of the operators.

24

Chapter 2

Previous Concepts

Throughout this chapter some previous concepts that are necessary for a better under-

standing of the later topics are detailed. Sparse matrices and its different structures are

analyzed. Also the basics of open multi-processing platform (OpenMP) and message

passing interface (MPI) are introduced.

2.1 Sparse Matrices

A sparse matrix is a matrix in which most of the elements are zeroes. By contrast, if

most of the elements are non-zero, then the matrix is called dense. The amount of

non-zero elements is known as number of non-zero (NNZ). Sparsity is defined as the

ratio of NNZ to the total number of elements of the matrix (see Equation 2.1).

Sparsity =
NNZ

Nelements
(2.1)

25

CHAPTER 2. PREVIOUS CONCEPTS

When solving engineering problems using numerical methods it is common to work with

large sparse matrices. In addition, these matrices usually have symmetrical properties.

Storing and manipulating sparse matrices as dense matrices, that is storing and ma-

nipulating all the zeroes, results in a waste of computing capacity, memory and electric

power. In order to avoid this heavy waste of resources, sparse data structures are de-

signed. The Figure 2.1 exposes three different types of sparse matrices; only the black

dots represent non-zero elements hence the white space is full of zeroes.

Figure 2.1: Sparse Matrix examples.

In computing science, sparse matrices must be stored within specific data structures. A

data structure is a particular way of organizing data inside a computer so that the com-

puter is able to use the data efficiently. In this project, data structures are implemented

as C++ objects that aims to store all the information of the matrix (i.e. the non-zero ele-

ments and the corresponding row and column indexes among many other parameters)

in the most efficient way. There are many different types of data structures for storing

sparse matrices but there is not any which is the best. Furthermore, the effectiveness

of the data structure depends heavily on many characteristics of the sparse matrix (e.g.

its sparsity, symmetry or how the NNZ are distributed within). In addition, the efficiency

of the data structure also depends on the application in which it is used. The Table 2.1

introduces the four data structures have been analyzed in the sections below.

26

CHAPTER 2. PREVIOUS CONCEPTS

Format Number of Entries

COO 3nnz
CRS 2nnz + nrows

CDS nnz +
p−1∑
i=1

i +
q−1∑
i=1

i

sparse xlf 2d nnz + 2n + 2m

Table 2.1: Sparse matrix data structures summary.

2.1.1 COO, Coordinate Format

The COO data structure consists in an associative array which stores as keys the row-

column pairs and links them to their corresponding non-zero value. Each key (row-

column pair) can only be associated to one entry [2]. Then, using a COO structure, the

matrix

3 5 0 0 0 0

2 1 6 0 0 0

0 3 9 1 0 0

0 0 1 7 3 0

0 0 0 8 2 3

0 0 0 0 1 2

,

is stored as exposed in Table 2.2.

Value 3 5 2 1 6 3 9 1 1 7 3 8 2 3 1 2
Row 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6
Column 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6

Table 2.2: COO data structure.

A matrix stored with COO structure has to store 3NNZ entries: NNZ for the non-zero

elements and 2NNZ for the corresponding pair of row-column keys. The COO format is

a good format for constructing randomly any sparse matrix but it is not efficient enough

when iterating over non-zero values. Furthermore, after constructing the sparse matrix

with a COO structure it is usually converted into a format more efficient for processing.

27

CHAPTER 2. PREVIOUS CONCEPTS

2.1.2 CRS, Compressed Row Storage

The CRS structure consists of three one-dimension arrays. The first array stores the

non-zero values of the matrix row wise. The second one stores the column index asso-

ciated to each non-zero element. Finally, the third array only stores one value for each

row that is the accumulated amount of non-zero elements in the previous rows; in other

words, the third array stores for each row the counter of the first non-zero element in

the row [3]. This way, if the third value in the row array is a 5 and the fourth is an 8 (see

Table 2.3 for instance), it is trivial to know that the 6th, 7th and 8th non-zero elements

belong to the third row. Then, using a CRS structure, the matrix

3 5 0 0 0 0

2 1 6 0 0 0

0 3 9 1 0 0

0 0 1 7 3 0

0 0 0 8 2 3

0 0 0 0 1 2

,

is stored as exposed in Table 2.3.

Value 3 5 2 1 6 3 9 1 1 7 3 8 2 3 1 2
Column 0 1 0 1 2 1 2 3 2 3 4 3 4 5 5 6
Row 0 2 5 8 11 14

Table 2.3: CRS data structure.

A matrix stored with CRS structure have to store 2NNZ + Nrow entries (where Nrow is the

number of rows): NNZ for the non-zero elements, NNZ for the column indexes and Nrow

for the row values. Then, the CRS structure uses less memory than COO structure.

However, saving memory is not its biggest advantage but the fact that the processing

of the data using CRS becomes much more efficient. Moreover, CRS structure is one

of the most efficient data structures when calculating the sparse matrix-vector product

row wise as it facilitates iterating over entire rows.

28

CHAPTER 2. PREVIOUS CONCEPTS

2.1.3 CDS, Compressed Diagonal Storage

The CDS structure consists of a set of one-dimension arrays. Each array stores all

the elements of one diagonal of the matrix. This structure works pretty well for banded

matrices, that is matrices that have a constant bandwidth from row to row.

The matrix A = (ai, j) is banded if there are two non-negative integer constants p and q,

called left and right half-bandwidth, such that ai, j = 0 if j < i − p or j > i + q.

The storage element for this structure is usually a two-dimension array which contains

the non-zero values such as A[d][p+1+q], where [d] refers to the number of elements in

the main diagonal and [p+1+q] is the total number of diagonals. Notice that, since the

rest of diagonals have less elements than the main one the CDS structure may contain

some fictitious zero elements which do not correspond to any real matrix location and

this implies a small waste of memory. However, adding these non-existing zeroes is

not detrimental: it facilitates the processing of the matrix by making all elements of the

same row to have the same array index and hence reducing the pointer arithmetic’s

overhead. Then, using a CDS structure, the matrix

3 5 0 0 0 0

2 1 6 0 0 0

0 3 9 1 0 0

0 0 1 7 3 0

0 0 0 8 2 3

0 0 0 0 1 2

,

is stored as exposed in Table 2.4.

A[i][0] 0 2 3 1 8 1
A[i][1] 3 1 9 7 2 2
A[i][2] 5 6 1 3 3 0

Table 2.4: CDS data structure.

29

CHAPTER 2. PREVIOUS CONCEPTS

A matrix stored with CDS structure have to store NNZ +
p−1∑
i=1

i +
q−1∑
i=1

i entries: NNZ for the

non-zero elements and the rest for the fictitious zeroes. The big advantage of using a

CDS structure is that the sparse matrix-vector product, when calculated diagonal wise

becomes much more efficient than other. Also the memory requirements for a CDS

structure are pretty lower than for the structures analyzed previously. However, the

CDS structure presents a big disadvantage: it can only be used for banded matrices.

2.1.4 sparse xlf 2d, Sparse XLF Two-Dimensional Structure

Basic previous knowledge about finite volume discretization is needed for a better un-

derstanding of the concepts concerning this structure. The penta-diagonal coefficient

matrix that appears in two-dimensional CFD cases discretized with structured meshes

do not fit correctly into the CDS structure due to its characteristics: two of the five diag-

onals are separated from the main one, so it does not satisfy the condition for banded

matrix. However, with some small modifications on the CDS it can be easily applied

to this specific CFD cases. The sparse xlf 2d structure is the proposal for this project.

Since the number of diagonals and its location are known from the discretization, the

diagonals c be initially labeled as south, west, center, east and north referring to how

the nodes are related between them. Then, using the sparse xlf 2d structure, the matrix

ac1 ae1 0 an1 0 0 0 0 0

aw2 ac2 ae2 0 an2 0 0 0 0

0 aw3 ac3 0 0 an3 0 0 0

as4 0 0 ac4 ae4 0 an4 0 0

0 as5 0 aw5 ac5 ae5 0 an5 0

0 0 as6 0 aw6 ac6 0 0 an6

0 0 0 as7 0 0 ac7 ae7 0

0 0 0 0 as8 0 aw8 ac8 ae8

0 0 0 0 0 as9 0 aw9 ac9

,

30

CHAPTER 2. PREVIOUS CONCEPTS

is stored as exposed in Table 2.5.

South 0 0 0 as4 as5 as6 as7 as8 as9

West 0 aw2 aw3 0 aw5 aw6 0 aw8 aw9

Center ac1 ac2 ac3 ac4 ac5 ac6 ac7 ac8 ac9

East ae1 ae2 0 ae4 ae5 0 ae7 ae8 0
North an1 an2 an3 an4 an5 an6 0 0 0

Table 2.5: sparse xlf 2d data structure

This way, the sparse xlf 2d consists of a set of five arrays: south, west, center, east,

north. Each array contains one of the diagonals of the previous coefficient matrix.

Then, a matrix stored with the sparse xlf 2d structure have to store NNZ+2N+2M en-

tries, where N and M are the number of vertical and horizontal nodes respectively:

NNZ for the non-zero elements, 2N for the interleaved zeroes corresponding to the non-

existing east/west wall coefficients and 2M for the zeroes corresponding to the non-

existing north/south wall coefficients. Note that this structure also stores some fictitious

zeroes but again, adding these non-existing zeroes is not detrimental: it facilitates the

processing of the matrix by making all elements of the same row to have the same array

index and this helps reducing the pointer arithmetic’s overhead.

In conclusion, the sparse matrix-vector product using the sparse xlf 2d data structure

is very efficient in comparison to COO and CRS. In one hand, performing the operation

with the COO data structure requires many tasks for each entry since the elements

are not stored following a pattern. Then, the row and column indexes must be read for

every product during the operation. On the other hand, the CRS data structure allows to

operate very efficiently since it facilitates to iterate over all the elements of a row and the

operation is performed by carrying out as many loops as rows has the matrix. Finally,

the sparse matrix-vector product using the sparse xlf 2d does not read either the row or

the column indexes since the pattern of the matrix is previously known hence the entire

operation can be performed by carrying out a single loop.

31

CHAPTER 2. PREVIOUS CONCEPTS

2.2 Open Multi-Processing for Shared Memory Systems

Open multi-processing (OpenMP or OMP) is an Application Program Interface (API),

jointly defined by a group of major computer hardware and software vendors including

AMD, IBM, Intel, Cray, HP, Fujitsu, Nvidia, NEC, Red Hat, Texas Instruments and Oracle

Corporation. OpenMP provides a portable, scalable model for developers of shared

memory parallel applications. In Figure 2.2 a shared memory system is represented

schematically. The API supports C/C++ and Fortran on a wide variety of architectures

[4] [5].

Figure 2.2: Scheme of a shared memory system.

In other words, OpenMP is an implementation of multi-threading, a method of paralleliz-

ing whereby a master thread sets a specified number of slave threads and the system

divides a task among them. The threads then run concurrently with the runtime envi-

ronment allocating threads to different processing units [6]. The section of code that is

meant to run in parallel is marked accordingly, with a preprocessor directive that causes

the threads to form before the section is executed. After the execution of the parallelized

code, the threads join back into the master thread, which continues onward to the end

of the program. The Figure 2.3 shows the OpenMP threading process.

By default in an OpenMP application, each thread executes the parallelized section of

code independently. Work-sharing constructs can be used to divide a task among the

threads so that each thread executes its allocated part of the code. Both task parallelism

and data parallelism can be achieved using OpenMP in this way.

32

CHAPTER 2. PREVIOUS CONCEPTS

Figure 2.3: Scheme of the OpenMP threading.

To compile a program using OpenMP, the system must have an implementation of

OpenMP installed. The header omp.h must be included in the C++ file and the flag

-fopenmp needs to be added to the compiling line in order to link the library and create

the executable. The example in Code 2.1 shows how to compile and execute a simple

OpenMP application in the Ubuntu terminal.

$ g++ -c -fopenmp executable.cpp -o executable

$./executable

Code 2.1: Compiling and executing an OpenMP application in the Ubuntu terminal.

Below is a short summary of the concepts about OpenMP required for the realization of

the project’s code and examples of its implementation. See the OpenMP manuals for

further information [7, 4].

2.2.1 The Parallel Region

To create a parallel region within the code, a defined preprocessor directive called

pragma must be used enclosing all the parallel work. The example in Code 2.2 shows

how to create the parallel region in C++. All threads created within the parallel region

execute concurrently the parallel work function.

33

CHAPTER 2. PREVIOUS CONCEPTS

#pragma omp parallel

{

parallel_work ();

}

Code 2.2: OMP Example. Creating the parallel region.

The number of threads created by default by the directive is set with an environment

variable called OMP NUM THREADS. If the environment variable is not modified man-

ually by the user, it usually takes the value of the total number of processors available in

the node. However, the environment variable can be set before executing the program

as shown in Code 2.3 in order to force the desired number of threads.

$ export OMP_NUM_THREADS=4

$./executable

Code 2.3: Setting the multi-threading environment variable in Ubuntu terminal.

In addition, the programmer is able to specify the number of threads created in a par-

ticular parallel region by using an OpenMP clause called num threads (the OpenMP

clauses are introduced later in Section 2.2.2). The example in Code 2.4 shows how to

create 8 threads within a parallel region using the num threads clause. The number can

be higher than the number of processors but this does not grant further improvement in

performance.

#pragma omp parallel num_threads (8)

{

parallel_work ();

}

Code 2.4: OMP Example. Using the num threads clause.

34

CHAPTER 2. PREVIOUS CONCEPTS

Finally, a very useful directive is introduced: the #pragma omp for. This directive auto-

matically divides the work within the next loop by distributing the number of iterations

between the threads. The OpenMP interface offers many clauses for properly distribut-

ing the work within the loop, which are exposed in Section 2.2.2. The example in Code

2.5 shows how to create the parallel loop using the #pragma omp for directive.

#pragma omp parallel

#pragma omp for

for (int i=0; i<N; ++i) {

parallel_work ();

}

}

Code 2.5: OMP Example. Using the #pragma omp for directive.

2.2.2 OpenMP Clauses

In order to modify the default parameters of the parallel region and also to decide how

does it manage data and work, the user is provided with tools called OMP clauses.

These clauses are kind of words that are able to change the default settings when

added to the OMP pragmas as shown in the example in Code 2.6. In the Section 2.2.1,

the clause num threads was introduced to show how to modify the default number of

threads created within the parallel region.

#pragma omp parallel omp_clause (value)

{

parallel_work ();

}

Code 2.6: OMP Example. Using OpenMP clauses.

35

CHAPTER 2. PREVIOUS CONCEPTS

Clauses for Managing Variables

The clauses default, shared and private are used to specify if a variable is going to

be shared between threads, that is visible and accessible by all simultaneously, or if

each thread will create a local copy and use it as a temporary variable instead. In

one hand, the clauses shared and private can have as input the list of variables for

which a specific behavior is desired. On the other hand, the clause default can have

the keywords shared, private or none as input in order to set the default behavior for the

non-specified variables in the parallel region. If default(none) is set, all the variables that

are used inside the parallel region must be previously included in a shared or private

clause since no default behavior is known for the variables. To use well this clauses is

very important because it can help the programmer to avoid undesirable behaviors such

as race condition. In software, race condition happens when multiple threads attempts

to access and modify the same variable at the same time causing random results.

The example in Code 2.7 shows a parallel program in which every thread executes a

N-step loop with some parallel work inside. In the example, the OpenMP clauses are

used to set the integer as private and the other variable as shared within the parallel

region. The Figure 2.4 represents how the variables are managed between different

threads. Notice that setting the integer as private forces each thread to execute the

entire loop. In contrast, if the integer is also declared as shared all threads increment

it simultaneously instead of individually and thus the iterations are randomly distributed

between all threads.

int i;

double x = 1.0;

#pragma omp parallel default (none) shared (x) private (i)

{

for (i=0; i<N; ++i) {

parallel_work (x);

}

}

Code 2.7: OMP Example. Setting the behavior of variables.

36

CHAPTER 2. PREVIOUS CONCEPTS

Figure 2.4: Scheme of OpenMP management of variables.

Another important clause for managing the use of the variables in a multi-thread pro-

gram is the reduction. This clause is a safe way of joining work from all threads after the

parallel region. It specifies that one or more variables that are private to each thread

are the subject of a reduction operation at the end of the parallel region. Data reduction

involves reducing a set of numbers into a smaller set of numbers via a function. For ex-

ample, reducing the list of numbers [1, 2, 3, 4, 5] with the sum function would produce

add([1, 2, 3, 4, 5]) = 15. Similarly, the multiplication reduction would yield mul([1, 2, 3,

4, 5]) = 120. This way, when multiple threads must perform the same operation on the

same variable, the clause reduction allows them to operate in a correct order. In the

example in Code 2.8, all threads add a to x. Thus as higher is the number of threads,

higher is the expected result for the reduction.

int x = 0;

int a = 1;

#pragma omp parallel default (none) shared (x,a) reduction (+:x)

{

x = x + a;

}

Code 2.8: OMP Example. Using the reduction clause.

37

CHAPTER 2. PREVIOUS CONCEPTS

Clauses for Synchronizing

In parallel computing, a barrier is a programming line which forces a group of threads or

processes to wait for everyone in the group reaching the barrier. The OpenMP barrier

clause makes the threads to wait until all the other threads of the team have reached it.

In the example in Code 2.9, any thread starts the parallel work 2 until the entire parallel

group finishes the parallel work 1.

#pragma omp parallel

{

parallel_work_1 ()

#pragma omp barrier

parallel_work_2 ();

}

Code 2.9: OMP Example. Using the barrier clause.

In contrast to the OpenMP barriers, there is a clause which allows the threads to keep

working without waiting the rest of the group. After some of the OpenMP directives (e.g.

#pragma omp for) there is an implied barrier. The nowait clause specifies that threads

completing an assigned work can proceed without waiting for all threads in the team to

finish. In the absence of this clause, threads may encounter a barrier synchronization

at the end of the parallel region. In the example in Code 2.10, threads are allowed to

start the second loop without waiting the rest of the group to finish the first loop.

#pragma omp parallel

{

#pragma omp for nowait

for (int i=0; i<N; ++i) {

parallel_work_1 ();

}

#pragma omp for

for (int i=0; i<N; ++i) {

parallel_work_2 ();

}

38

CHAPTER 2. PREVIOUS CONCEPTS

}

Code 2.10: OMP Example. Using the nowait clause.

Clauses for Work Sharing

Distributing the tasks of a loop can be a hard job. The effectiveness of the work-sharing

depends on many factors as the size of the loop, the size of the chunks, the tasks

executed in each iteration and the number of threads among many others. Furthermore,

the performance of a parallel code can be even lower than the sequential code if the

work-sharing is not properly defined.

The OpenMP platform offers the clause schedule and many options for defining how the

threads share the work load. The syntax of the clause is: schedule (type, chunk). The

iterations in the parallel region are assigned to threads depending on the scheduling

method defined. Four different loop scheduling types can be provided: static, dynamic,

guided and auto. When specified, the optional parameter chunk must be a positive

integer [8]. In the example in Code 2.11, the scheduling is set as automatic in order to

let the compiler decide the work-sharing option.

#pragma omp parallel

{

#pragma omp for schedule(auto)

for (int i=0; i<N; ++i) {

parallel_work ();

}

}

Code 2.11: OMP Example. Using the schedule clause.

39

CHAPTER 2. PREVIOUS CONCEPTS

2.2.3 Manual Work-Sharing

In Section 2.2.2, the clause for distributing the loop within a parallel region and its op-

tions has been exposed. However, there is still the possibility of distributing it manually.

The OpenMP function omp get thread num returns a positive integer which identifies

the number of the thread that is calling the function and is required for manually dis-

tributing the work as well as the function omp get max threads, which returns the total

number of threads within the parallel region. It is possible to assign each thread a spe-

cific part of work if its specific identifier is known. The example in Code 2.12 shows an

very simple but illustrative way of manually distributing some generic parallel work.

#pragma omp parallel num_threads(2)

{

int thread_id = omp_get_thread_num ();

if (thread_id == 1) parallel_work_1 ();

if (thread_id == 2) parallel_work_2 ();

}

Code 2.12: OMP Example. Manual work-sharing.

In this project, the manual work-sharing has also been implemented to the parallel alge-

braic operators in order to compare the performance obtained with the manual method

to the performance obtained with the scheduled method in order to check whether there

is any overhead affecting the performance due to the OpenMP automatic scheduling.

An example of manually distributing the work within a loop is shown in the example in

Code 2.13.

#pragma omp parallel default(none) shared(N)

{

int threads = omp_get_max_threads ();

int thread_id = omp_get_thread_num ();

int ini = thread_id*N/threads;

int end = (thread_id+1)*N/threads;

for (int i=ini; i<end; ++i) {

40

CHAPTER 2. PREVIOUS CONCEPTS

parallel_work ();

}

}

Code 2.13: OMP Example. Manual work-sharing.

2.3 MPI, Message Passing Interface for Distributed Memory

Systems

Message Passing Interface (MPI) is a standardized and portable message-passing in-

terface designed by a group of researchers from academia and industry to function on

a wide variety of parallel computers. The standard defines the syntax and semantics

of a core of library routines useful to a wide range of users writing portable message-

passing programs in C, C++, and Fortran. There are several well-tested and efficient

implementations of MPI, many of which are open source or in the public domain. These

fostered the development of a parallel software industry, and encouraged development

of portable and scalable large-scale parallel applications.

In contrast to a program parallelized with OpenMP (Section 2.2) in which only the mas-

ter thread executes the code until it meets the definition of a parallel region and then

distributes tasks among multiple processes, a program parallelized with MPI must be

run entirely by all processes. The MPI calls are functions that makes any process to

send/receive information to/from other process or processes. In order to manage the

origin and destination of the messages, each process has a unique identifier. It is very

important to understand that all processes are running the same program so every

process must know its identifier as well as the total number of processes in order to ex-

ecute only its corresponding MPI calls. The Figure 2.5 represents a generic distributed

memory system which is required for MPI implementations.

41

CHAPTER 2. PREVIOUS CONCEPTS

Figure 2.5: Scheme of a distributed memory system.

To compile a program using MPI, the system must have an implementation of MPI in-

stalled. First of all, the header mpi.h must be included in the C++ file. Then, the compiler

must be changed to mpic++. Finally, the command mpirun and also the required flags

must be used for running the application. The flag -n X, where X is a positive integer

higher than zero, is added to specify the desired number of processes that will execute

the program. The number of requested processes should be as much the number of

processors available in the system as shown in Figure 2.6. This way, all requested pro-

cesses will execute a copy of the same application. The example in Code 2.14 shows

how to compile and run a MPI application in the Ubuntu terminal.

$ mpic++ -c executable.cpp -o executable

$ mpirun -n 4 ./executable

Code 2.14: Compiling and executing a MPI application in the Ubuntu terminal.

Figure 2.6: Scheme of a MPI process distribution.

Below is a short summary of the concepts of MPI which have been used for the paral-

42

CHAPTER 2. PREVIOUS CONCEPTS

lelization of the operators and some examples of its implementation. See the MPI user

guide and its manpage for further information [9, 10, 11].

2.3.1 The MPI Groups and Communicators

In MPI, a group is an ordered set of process identifiers [11]. The ordering is given by as-

sociating with each process identifier a unique rank from 0 to the size of the group minus

1. More specifically, an MPI group is a local representation of a set of MPI processes.

MPI groups are represented by the opaque type MPI Group in C++ applications. This

way a process can contain local representations of many MPI groups some of which

may not include itself.

MPI defines a rich set of operations on groups; since a group is essentially an ordered

set (in the algebraic sense of the word), an application can perform group unions, in-

tersections, inclusions, exclusions, comparisons, and so on. These operations, while

not commonly invoked in many user applications, form the backbone of communicator

functionality and may be used by the MPI implementation itself.

A communicator is an object that encapsulates all communication among a set of pro-

cesses. Communicators are represented in MPI C++ programs by the type MPI Comm.

Although communicator is a local MPI object (i.e. it physically resides in the MPI pro-

cess), it represents a process’ membership in a larger process group. Specifically, even

though MPI Comm objects are local, they are always created collectively between all

members in the group that the communicator contains. Hence, a process can only have

an MPI Comm handle for communicators of which it is a member.

The MPI default communicator called MPI COMM WORLD is created when the function

MPI Init is called. In the MPI manual, the MPI COMM WORLD is defined as “all pro-

cesses the local process can communicate with after initialization (including itself), and

is defined once MPI INIT has been called”. Although the specific meaning of this state-

43

CHAPTER 2. PREVIOUS CONCEPTS

ment varies between different MPI implementations, it generally means that all MPI pro-

cesses started via mpirun are included in MPI COMM WORLD together. At this point,

the processors are allowed to call other MPI functions until the function MPI Finalize

is called, which ends with the possibility to call any MPI function. Furthermore, both

MPI Init and MPI Finalize can be called only once in the whole program so it is advis-

able that all the tasks of the application are located between them.

The example in Code 2.15 exposes a basic way of initializing MPI and getting the rank

of the process as well as the number of processes within the default communicator.

int main () {

int rank;

int world;

MPI_Init (NULL, NULL);

MPI_Comm_size(MPI_COMM_WORLD , &world);

MPI_Comm_rank(MPI_COMM_WORLD , &rank);

MPI_Finalize ();

}

Code 2.15: MPI Example. Initializing MPI.

2.3.2 The MPI Send & Receive

Sending and receiving are the two foundational concepts of MPI. Almost every single

function in MPI can be implemented with basic send and receive calls. MPI’s send

and receive calls operate in the following manner. First, process A decides a message

needs to be sent to process B. Process A then packs up all of its necessary data into

a buffer for process B. These buffers are often referred to as envelopes since the data

is being packed into a single message before transmission (similar to how letters are

packed into envelopes before transmission to the post office). After the data is packed

into a buffer, the communication device (which is often a network) is responsible for

44

CHAPTER 2. PREVIOUS CONCEPTS

routing the message to the proper location. The location of the message is defined by

the process’s rank [12].

Even though the message is routed to B, process B still has to acknowledge that it

wants to receive A’s data. Once it does this, the data has been transmitted. Process A

is acknowledged that the data has been transmitted and may go back to work.

Sometimes there are cases when A might have to send many different types of mes-

sages to B. Instead of B having to go through extra measures to differentiate all these

messages, MPI allows senders and receivers to also specify message IDs with the

message (known as tag). When process B only requests a message with a certain tag

number, messages with different tag will be buffered by the network until B is ready for

them.

The prototypes of the MPI Send and MPI Recv functions are shown in Code 2.16. The

first argument is the data buffer, that is a pointer to the variable which is going to be sent.

The second and third arguments describe the count and type of elements that reside

in the buffer. MPI Send sends the exact count of elements, and MPI Recv will receive

at most the count of elements. The fourth and fifth arguments specify the rank of the

sending/receiving process and the tag of the message. The sixth argument specifies

the communicator and the last argument (for MPI Recv only) provides information about

the received message.

MPI_Send (

void* data,

int count,

MPI_Datatype datatype,

int destination ,

int tag,

MPI_Comm communicator

)

MPI_Recv (

void* data,

int count,

45

CHAPTER 2. PREVIOUS CONCEPTS

MPI_Datatype datatype,

int source,

int tag,

MPI_Comm communicator ,

MPI_Status* status

)

Code 2.16: Prototypes of MPI Send and MPI Recv.

2.3.3 The MPI Reduce

In some MPI parallel applications, there is need to send/receive information to/from all

the processes in the communicator. The function MPI Reduce and MPI AllReduce are

examples of functions for performing collective communications simultaneously. Recall

from 2.2.2 that a reduction involves transforming a list of numbers into a shorter list

of numbers or even a single number. This way, the MPI Reduce performs a reduc-

tion operation in a single process, and the MPI AllReduce performs the reduction in all

processes at once.

This functions are very useful for the parallel dot product implementation. After finishing

the local dot product, the reduction is desired for calculating the result for the global

dot product operation. The example in Code 2.17 shows how the reduction is used for

calculating the global result after calculating the local one.

double result_loc=0;

double result_glb=0;

result_loc = dot_product (x, y, leng);

MPI_Reduce(&result_loc , &result_glb , 1, MPI_DOUBLE , MPI_SUM, 0,

MPI_COMM_WORLD);

Code 2.17: MPI Example. Using the MPI Reduce.

46

CHAPTER 2. PREVIOUS CONCEPTS

The first argument is the send-data buffer, that is a pointer to the variable which is going

to be reduced. The second argument is the receive-data, that is a pointer to variable in

which the reduced value is going to be stored. The third and fourth arguments describe

the count and type of elements that reside in the buffers. The fifth argument specifies

the reduction operation. The sixth argument specifies the root, that is the process which

will perform the reduction. Finally, the last argument specifies the communicator.

2.3.4 The MPI Barrier

Similar to the OpenMP implementation, the parallelization with MPI also needs to be

synchronized. The function MPI Barrier is used in this project for synchronization pur-

poses. Recall from Section 2.2.2 that a barrier is a programming line that forces a group

of threads or processes to wait for everyone in the group reaching the barrier.

2.4 Hybrid Parallel Programming

The hybrid parallel programming refers to the practice of using two or more parallel in-

terfaces within the same code. Specifically, the hybrid MPI+OpenMP is a parallelization

paradigm commonly used in computational applications that are to be run in computer

clusters or supercomputers and it has been used in this project for the third stage im-

plementation of the operators in Section 6.4.3. The Figure 2.7 represents how OMP

threads and MPI processes are distributed. In one hand, the MPI distributes one pro-

cess per node. On the other hand, OpenMP saturates each node by creating as many

threads as processors has the node.

47

CHAPTER 2. PREVIOUS CONCEPTS

Figure 2.7: Scheme of a hybrid task distribution.

48

Chapter 3

Mathematical Formulation

In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow,

that is liquids and gases in motion. Fluid dynamics has a wide range of applications,

including determining the turbulent eddies generated inside the combustion chamber

of an engine, calculating the rate of heat dissipation of a CPU or predicting weather

patterns among many others.

The solution to a fluid dynamics problem typically involves calculating various proper-

ties of the fluid, such as flow velocity, pressure, density, and temperature, as functions

of space and time. Although fluids are composed of molecules that collide with one

another and solid objects, they are assumed to obey the continuum assumption so, the

fact that the fluid is made up of discrete molecules is ignored. Therefore continuum

assumption considers fluids as continuous medium rather than discrete. Consequently,

properties such as density, pressure, temperature, and flow velocity are supposed well-

defined at infinitesimally small points, and are assumed to vary continuously from one

point to another.

The hypotheses considered hereinafter are:

49

CHAPTER 3. MATHEMATICAL FORMULATION

• Continuum assumption: The sample of fluid has a sufficiently large number of

molecules and, therefore, fluid properties vary continuously in space and time.

• Two-dimensional flow: The properties of the fluid only vary in the plane.

• Incompressible flow: The flow is composed of an incompressible fluid.

• Newtonian fluid: The viscosity of the fluid is considered constant.

• Boussinesq approximation: Density differences are ignored except in terms

where it is multiplied by g (acceleration due to gravity).

• Non-participating medium: The fluid neither emits, absorbs, nor scatters radia-

tion and hence has no effect on radiation exchange.

• Absence of viscous dissipation: The viscous dissipation term in energy equa-

tion is zero.

• Absence of volumetric energy sources: The volumetric source terms in energy

equation are zero, that is no energy is generated within the control volume.

From this point, the formulation of the governing equations for the present project can

be started.

3.1 Reynolds Transport Theorem

Physical laws are stated in terms of various physical parameters (e.g. mass, velocity

or temperature). Consider an extensive parameter Φ. Thus, the intensive parameter ϕ

represent the amount of the parameter per unit mass. That is,

Φ = mϕ

50

CHAPTER 3. MATHEMATICAL FORMULATION

where m is the mass of the portion of fluid of interest. This way, the amount of an

extensive parameter in a determined portion of fluid can be determined as

Φsys =

∫
sys
ρϕd V–

where ρ is the density of the fluid of interest.

Sometimes it is interesting to measure the variation of the property in a system. A

system is an identifiable collection of mass that moves with the fluid (indeed it is a

specified portion of the fluid). Other times it is interesting to see what effect the fluid

has on a particular fixed region in space called control volume. A control volume is a

geometrically defined volume in space through which fluid particles may flow.

Most of the laws governing fluid motion involve the time rate of change of an extensive

property of a fluid system. Thus, it is usual to encounter terms such as

dΦsys

dt
=

d
(∫

sys ρϕd V–
)

dt
. (3.1)

To formulate the laws into a control volume approach, the expression for the time rate of

change of an extensive property within a control volume is required. This can be written

as
dΦcv

dt
=

d
(∫

cv ρϕd V–
)

dt
. (3.2)

Although Equations 3.1 and 3.2 may look very similar, the physical interpretation of each

is quite different. Mathematically, the difference is represented by the difference in the

limits of integration. Recall that the control volume is a volume in space (in most cases

stationary). On the other hand, the system is a portion of fluid. The Reynolds trans-

port theorem provides the relationship between the time rate of change of an extensive

property for a system and that for a control volume, that is the relationship between

Equations 3.1 and 3.2 [13].

51

CHAPTER 3. MATHEMATICAL FORMULATION

3.1.1 Derivative of the Reynolds Transport Theorem

A simple version of the Reynolds transport theorem relating system concepts to control

volume concepts can be obtained easily for the flow through an arbitrary, fixed control

volume shown in Figure 3.1. The control volume is considered stationary. The system

considered is that fluid occupying the control volume at some initial time t. A short time

later, at time t + δt, the system has moved slightly to the right and the system is no

longer coincident with the control volume.

Figure 3.1: Control volume and system for flow through an arbitrary, fixed control vol-
ume.

In the Figure 3.1, the outflow from the control volume from time t to t + δt is denoted as

volume II, the inflow as volume II, and the control volume itself as CV. Thus, the system

at time t consists of the fluid in section CV (SYS = CV at time t), while at time t + δt the

system consists of the fluid that now occupies sections (CV - I) + II.

If Φ is an extensive parameter of the system, then the value of it for the system at time

52

CHAPTER 3. MATHEMATICAL FORMULATION

t is

Φsys(t) = Φcv(t)

since the system and the fluid within the control volume coincide at this time. Its value

at time t + δt is

Φsys(t + δt) = Φcv(t + δt) − ΦI(t + δt) + ΦII(t + δt).

Thus, the change in the amount of Φ in the system in the time interval δt divided by this

time interval is given by

δΦsys

δt
=

Φsys(t + δt) − Φsys(t)
δt

=
Φcv(t + δt) − ΦI(t + δt) + ΦII(t + δt) − Φsys(t)

δt
.

By using the fact that at the initial time Φsys(t) = Φcv(t), this ungainly expression may be

rearranged as follows.

δΦsys

δt
=

Φcv(t + δt) − Φcv(t)
δt

−
ΦI(t + δt)

δt
+

ΦII(t + δt)
δt

. (3.3)

In the limit δt → 0, the left-hand side of Equation 3.3 is equal to the time rate of change

of Φ for the system and is denoted as

DΦsys

Dt
.

The material derivative notation (DΦsys/Dt) is used to denote this time rate of change

to emphasize the Lagrangian character of this term.

In the limit δt → 0, the first term on the right-hand side of Equation 3.3 is seen to be the

time rate of change of the amount of Φ within the control volume

∂Φcv

∂t
=
∂
(∫

cv ρϕd V–
)

∂t
. (3.4)

The third term on the right-hand side of Equation 3.3 represents the rate at which the

extensive parameter Φ flows from the control volume, across the control surface II (the

53

CHAPTER 3. MATHEMATICAL FORMULATION

control surface II is the surface of CV through which the fluid leaves the control volume).

Hence, in the limit δt → 0, this term can be expressed as

∂ΦII

∂t
= Φ̇out =

∫
csII

ρϕ(V · n̂)dA. (3.5)

where V is the velocity of the flow through the differential area element dA and n̂ is the

outward pointing vector normal to the surface [13].

Similarly, the second term on the right-hand side of Equation 3.3 represents the inflow

of Φ into the control volume across the control surface I (the control surface I is the

surface of CV through which the fluid enters the control volume). Hence, in the limit

δt → 0, this term can be expressed as

∂ΦI

∂t
= Φ̇in = −

∫
csI

ρϕ(V · n̂)dA. (3.6)

The net flux (flow-rate) of parameter Φ across the entire control surface is

Φ̇out − Φ̇in =

∫
csII

ρϕ(V · n̂)dA −
(
−

∫
csI

ρϕ(V · n̂)dA
)

=

∫
cs
ρϕ(V · n̂)dA, (3.7)

where the integration is over the entire control surface.

Finally, by combining Equations 3.4 and 3.7, the time rate of change of Φ for the system

is
DΦsys

Dt
=
∂

∂t

(∫
Ω

ρϕdΩ

)
+

∫
cs
ρϕ(V · n̂)dA. (3.8)

This can be written in a slightly different form by using Ω as a generic fixed control

volume, u as a generic velocity vector, and also introducing the derivative in the first

term in the right-side (this is possible because the control volume is static), and applying

the Gauss theorem to the second term in the right-hand side of the equation so that

DΦsys

Dt
=

∫
Ω

∂

∂t
(ρϕ)dΩ +

∫
Ω

∇ · (ρϕu)dΩ. (3.9)

54

CHAPTER 3. MATHEMATICAL FORMULATION

Thus, the Reynolds transport theorem equation (Equation 3.9) represent a way to trans-

fer from the Lagrangian viewpoint (follow a particle or follow a system) to the Eulerian

viewpoint (observe the fluid at a given location in space or observe what happens in

the fixed control volume). Because the system is moving and the control volume is

stationary, the time rate of change of the amount of Φ within the control volume is not

necessarily equal to that of the system.

3.2 Conservation Laws

The fundamental axioms of fluid dynamics are the conservation laws, specifically, con-

servation of mass, conservation of linear momentum (also known as Newton’s second

law of motion), and conservation of energy (also known as first law of thermodynamics).

In addition, these laws are typically expressed using the Reynolds transport theorem.

The law of conservation for any extensive parameter, Φ, states that the total amount of

the parameter within a system must remain constant in the absence of sources produc-

ing that physical property. In other words, the time rate of change in the amount of Φ in

the system is equal to the time rate of generation of Φ within the system

DΦsys

Dt
=

∫
sys

Q̇d V– , (3.10)

where Q̇ represents the time rate of generation of Φ. Hence, the parameter Φ remains

constant in the system if the sources are equal to zero.

The Equation 3.10, which is expressed from a Lagrangian viewpoint, can be transferred

to a Eulerian viewpoint using the Reynolds transport theorem in Equation 3.9 so that

∫
Ω

∂

∂t
(ρϕ)dΩ +

∫
Ω

∇ · (ρϕu)dΩ =

∫
Ω

Q̇dΩ, (3.11)

The expression above is the integral conservation law that expresses the variation of Φ

55

CHAPTER 3. MATHEMATICAL FORMULATION

within the control volume, general for any conservative and continuous parameter, Φ.

As the Equation 3.11 holds for any arbitrary volume Ω, it must be valid locally at any

point within control volume so that

ρ

(
∂ϕ

∂t
+ ∇ · (ϕu)

)
= Q̇, (3.12)

The Equation 3.12 is the general differential expression for the conservation law. Recall

that the density is considered constant.

3.3 Convection-Diffusion Equation

The objective of this section is to introduce the diffusive term into the conservation law.

The diffusive term arises from the source term of the conservation equation but it is

usually considered as a contribution to the flow in addition to the convective term. Thus,

for any conservative property Φ there is a flow that is made up of two contributions: the

convective and the diffusive. However, the contribution of the diffusive term does not

depend on the movement of the fluid.

The expression for the diffusive term is given by a constitutive law assuming the follow-

ing experimental observations:

• the diffusive flow is proportional to the gradient of the physical magnitude,

• the gradient as directional operator needs to be negative in order to point in the

direction of minimization of the function,

• the contribution must be proportional to a diffusivity factor, which is an inherent

property of the physical quantity considered and its value usually relies on exper-

imental results. In addition, its value is considered constant.

56

CHAPTER 3. MATHEMATICAL FORMULATION

Thus, the diffusive term is mathematically defined as

−ρΓ∇2ϕ,

where Γ is the diffusivity factor. Inserting the expression above into the conservation

law in Equation 3.12, the convection-diffusion equation results in

ρ

(
∂ϕ

∂t
+ ∇ · (ϕu) − Γ∇2ϕ

)
= Q̇. (3.13)

Recall that the convection-diffusion (Equation 3.13) is no more than the conservation

equation (Equation 3.12) for which a specific contribution of the source term is consid-

ered independent from it in the form of the diffusive term. This term is very useful for

formulating the Navier-Stokes equations.

3.4 Navier-Stokes Equations

The Navier-Stokes system of equations is a set of partial, differential conservation equa-

tions that describe the behavior of fluids. The system is composed of:

• conservation of mass,

• conservation of linear momentum,

• conservation of energy.

The structure for each equation is similar to the convection-diffusion expression in Equa-

tion 3.13. Further, the Navier-Stokes equations can be deduced from it by just replacing

its generic parameters by the specific parameters for each conservation law listed in

Table 3.1 [14] [15].

57

CHAPTER 3. MATHEMATICAL FORMULATION

Equation ϕ Γ Q̇

Continuity 1 0 0
Momentum u ν −∇p + F
Energy T α Θ/cP

Table 3.1: Navier-Stokes replacing parameters.

3.4.1 Continuity

The law of conservation of mass or principle of mass conservation states that for any

system closed to all transfers of matter, the mass of the system must remain constant

over time, as system mass can not change quantity if it is not added or removed.

The law implies that mass can neither be created nor destroyed. Thus the quantity

of mass is conserved over time hence there is no diffusive flow neither source term in

the convection-diffusion equation. The property Φ for this case is the mass m, then

ϕ = 1. Replacing the specific parameters for the continuity equation in Table 3.1 into the

Equation 3.13, the resulting expression for continuity is

∇ · u = 0, (3.14)

also expressed in Cartesian coordinates as

∂ux

∂x
+
∂uy

∂y
= 0. (3.15)

3.4.2 Momentum

The law of conservation of linear momentum states that in a closed system (i.e. one

that does not exchange any matter with its surroundings and is not acted on by external

forces) the total linear momentum is constant. This fact is implied by Newton’s second

law of motion. The property Φ for this case is the linear momentum, mu, then ϕ = u.

Replacing the specific parameters for the momentum equation in Table 3.1 into the

58

CHAPTER 3. MATHEMATICAL FORMULATION

Equation 3.13, the resulting expression for momentum is

ρ

(
∂u
∂t

+ (u · ∇)u − ν∇2u
)

= −∇p + F, (3.16)

where the product ρν is the dynamic viscosity µ, and F represents the sum of body

forces. If considering only the gravitational body force F = ρg, and using the Boussi-

nesq approximation which only considers important the variation of the density if it is

multiplied by the gravity, the body force term results in

F = ρ(1 − β∆T)g, (3.17)

where β is the thermal expansion coefficient and g is the gravity vector. Finally, the

linear momentum equation results in

ρ

(
∂u
∂t

+ (u · ∇)u
)

= µ∇2u − ∇p + ρ(1 − β∆T)g, (3.18)

also expressed in Cartesian coordinates as

ρ

(
∂ux

∂t
+ ux

∂ux

∂x
+ uy

∂ux

∂y

)
= µ

(
∂2ux

∂x2 +
∂2ux

∂y2

)
+ ρ(1 − β∆T)gx −

∂p
∂x
, (3.19)

ρ

(
∂uy

∂t
+ ux

∂uy

∂x
+ uy

∂uy

∂y

)
= µ

∂2uy

∂x2 +
∂2uy

∂y2

 + ρ(1 − β∆T)gy −
∂p
∂y
. (3.20)

3.4.3 Energy

The law of conservation of energy states that the total energy of an isolated system

remains constant, it is said to be conserved over time. Energy can neither be created

nor destroyed; rather, it transforms from one form to another. The property Φ for this

case is the enthalpy, H, then ϕ = cPT . Replacing the specific parameters for the energy

equation in Table 3.1) into the Equation 3.13,

ρ

(
∂T
∂t

+ (u · ∇)T − α∇2T
)

=
Θ

cP
, (3.21)

59

CHAPTER 3. MATHEMATICAL FORMULATION

where α = λ/ρcP is the thermal diffusivity, then ρα = λ/cP. The coefficient λ is the

thermal conduction coefficient, and the cP is the isobaric heat capacity, both are flow

properties. Finally, if the source term is neglected, the resultant expression is

ρ

(
∂T
∂t

+ (u · ∇)T
)

=
λ

cP
∇2T, (3.22)

or in Cartesian coordinates

ρ

(
∂T
∂t

+ ux
∂T
∂x

+ uy
∂T
∂y

)
=

λ

cP

(
∂2T
∂x2 +

∂2T
∂y2

)
. (3.23)

Note that because Boussinesq hypotheses is considered, the density variations are

taken into account in the buoyancy term with the objective of simulating the natural

convection of the fluid. Hence, the motion of the fluid may be affected by its gradient of

temperatures.

3.5 Governing Equations

In this section, the governing system of equations is exposed considering two different

CFD scenarios that are: natural convection and forced convection. Their differences

are due to the contribution of the buoyancy term.

3.5.1 Natural Convection

In natural convection, the buoyancy term has a significant contribution. Hence, the

motion of the fluid is affected by the buoyancy. In other words, the motion of the fluid

depends on its gradient of temperatures.

The governing system of equations in natural convection consists of the continuity, mo-

60

CHAPTER 3. MATHEMATICAL FORMULATION

mentum and energy equations, that is

∇ · u = 0, (3.24)

ρ
∂u
∂t

+ ρ(u · ∇)u = µ∇2u − ∇p + ρ(1 − β∆T)g, (3.25)

ρ
∂T
∂t

+ ρ(u · ∇)T =
λ

cP
∇2T, (3.26)

3.5.2 Forced Convection

Forced convection happens when the buoyancy term can be neglected due to its in-

significant contribution. Hence, the motion of the fluid is not affected by the buoyancy.

In this case, the flow does not depend on its gradient of temperature and the energy

equation becomes useless. In addition, the flow can be assumed isotherm.

The governing system of equations in forced convection consists of only the continuity

and momentum equation, that is

∇ · u = 0, (3.27)

ρ
∂u
∂t

+ ρ∇ · (uu) = µ∇2u − ∇p. (3.28)

3.6 Non-Dimensionalization

Non-dimensionalization is the partial or full removal of units from an equation involv-

ing physical quantities by a suitable substitution of variables [16, 17]. Dimensionless

numbers are obtained in this process, which are very useful, both for understanding the

behavior of the equations and to synthesize information.

The steps needed to non-dimensionalize a system of equations are:

61

CHAPTER 3. MATHEMATICAL FORMULATION

• identify all the independent and dependent variables,

• replace each of them with a quantity scaled relative to a characteristic unit of

measure to be determined,

• choose judiciously the definition of the characteristic unit for each variable so that

the coefficients of as many terms as possible become 1,

• rewrite the system of equations in terms of their new dimensionless quantities.

The last two steps are usually specific to the problem where non-dimensionalization is

applied.

3.6.1 Dimensionless Governing Equations

Both governing system of equations exposed in Section 3.5 are non-dimensionalized in

this section.

Natural Convection

The parameters used in this project for non-dimensionalizing the governing system of

equations in the natural convection scenario (Equations 3.24, 3.25, and 3.26) are pro-

posed in [18] and attached in Table 3.2. Thus, the resulting dimensionless system of

equations is

∇ · û = 0, (3.29)

∂û
∂t̂

+ (û · ∇)û =
Pr

Ra0.5∇
2û − ∇ p̂ + f, (3.30)

∂T̂
∂t̂

+ (û · ∇)T̂ =
1

Ra0.5∇
2T̂ . (3.31)

62

CHAPTER 3. MATHEMATICAL FORMULATION

where f = (sin γPrT̂ , cos γPrT̂) represents the body forces (the buoyancy) term for a

control volume with a γ degrees tilt respect to the gravity’s direction. The dimensionless

numbers that appear applying this non-dimensionalization are:

• Rayleigh (Ra): Is the ratio of the heat transfer in the form of conduction to the

heat transfer in the form of convection. The Rayleigh number is defined as

Ra =
gβ∆T L3

0

να
. (3.32)

• Prandtl (Pr): Is the ratio of the momentum diffusivity to the thermal diffusivity.

The Prandtl number is defined as

Pr =
ν

α
. (3.33)

Variable Units Symbol Reference Quantity Dimensionless

Distance [m] x, y L0 x̂, ŷ
Velocity [m/s] u (α/L0)Ra0.5 û
Pressure [Pa] p ρ(α2/L2

0)Ra p̂
Temperature [K] T Ti − T0 T̂
Time [s] t (L2

0/α)Ra−0.5 t̂

Table 3.2: Definition of the non-dimensionalization parameters.

3.6.2 Forced Convection

The parameters used in this project for non-dimensionalizing the governing system of

equations in the forced convection scenario (Equations 3.27, and 3.28) are attached in

Table 3.3. Thus, the resulting dimensionless system of equations is

∇ · û = 0, (3.34)

∂û
∂t̂

+ (û · ∇)û =
1

Re
∇2û − ∇ p̂, (3.35)

where the only dimensionless number appearing is the Reynolds number:

63

CHAPTER 3. MATHEMATICAL FORMULATION

• Reynolds (Re): Is the ratio of inertial forces to viscous forces and quantifies the

relative importance of these two types of forces for given flow conditions. The

Reynolds number is defined as

Re =
ρU0L0

µ
. (3.36)

Variable Units Symbol Reference Quantity Dimensionless

Distance [m] x, y L0 x̂, ŷ
Velocity [m/s] u U0 û
Pressure [Pa] p ρ0U2

0 p̂
Time [s] t L0/U0 t̂

Table 3.3: Definition of the non-dimensionalization parameters.

64

Chapter 4

Numerical Solution of the

Governing Equations

The governing equations described in Chapter 3 only have analytic solution in cases

where the boundary conditions are very restrictive. The spatiotemporal discretization

techniques are used to get a mathematical model that can be treated by a computer in

order to deal with a CFD problem that is defined in the continuous field. It is important

to note that discretizing implies truncation errors that should be analyzed carefully.

4.1 Grids

Discretization grids are defined as the discrete set of control volumes belonging to the

continuous domain for which solutions are obtained. As a general classification, there

are two types of grids, structured and unstructured (see Figure 4.1).

• Structured Grid: is a tessellation of n-dimensional Euclidean space by congruent

65

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

parallelotopes (e.g. bricks). Its main feature is that each node can be accesed by

the indexes (i, j) in two-dimensional problems, (i, j, k) in three-dimensional prob-

lems and so on, only depending on the dimension of the problem. This fact sim-

plifies the programming code as well as facilitates the classification of nodes.

Furthermore, the system of equations obtained by applying this technique allows

to use more efficient algorithms which require less computing power.

– Cartesian Grid: it is a particular type of structured grid for which two sets

of lines perpendicular to each other define the whole structure. Hence, the

flows are perpendicular to the all control surfaces.

• Unstructured Grid: is a tessellation of a part of the Euclidean plane or Euclidean

space by simple shapes, such as triangles or tetrahedra, in an irregular pattern.

The programming code for this type of mesh becomes more difficult and less

efficient, also the algorithm requires more computing power. However, this type

of grid allows a great flexibility in geometry and also to locally densify a specific

part of the grid.

(a) Structured grid. (b) Unstructured grid.

Figure 4.1: Examples of grids around an airfoil.

The parallel operators of this project are implemented for cartesian grids. In addition,

the evaluation of the parameters within the grid is done in a staggered way. In the

staggered treatment, the velocities of the flow are evaluated at the faces of the control

volume but the rest of parameters are evaluated in the center in order to avoid an effect

known as checkerboard [19]. The Figure 4.2 shows the three different types of control

66

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

volumes that are involved in a two-dimensional staggered grid: one for the horizontal

component of the velocity, another for the vertical component of the velocity and finall

and finally one for the centered parameters such as pressure or temperature.

Figure 4.2: Different control volumes in a staggered grid.

4.2 Discretization

In this section, the dimensionless governing equations in the forced convection scenario

are discretized (Equation 3.34 and 3.35). The discretization is finally represented in

an operator-based formulation in order to design a CFD algorithm using the parallel

algebraic operators programmed in this project.

Hats denoting non-dimensional variables will be dropped hereafter for simplicity.

4.2.1 Temporal Discretization

Temporal discretization consists of integrating over time an equation continuous in time.

The Equation 3.34 does not have any temporary term. Hence, only the Equation 3.35

is discretized in time.

67

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

Before starting to integrate the equation, the momentum equation is re-written as follows

∂u
∂t

= R(u) − ∇p, (4.1)

where

R(u) = −(u · ∇)u +
1

Re
∇2u (4.2)

Integrating the Equation 4.1 over time results in

∫ n+1

n

∂u
∂t

dt =

∫ n+1

n
R(u)dt −

∫ n+1

n
∇pdt. (4.3)

Assuming that the temporal gradient of the velocity is constant over a specific time

interval ∆t, the term on the left-hand side of the Equation 4.3 is

∫ n+1

n

∂u
∂t

dt ≈
∂u
∂t

n+ 1
2

∆t, (4.4)

where
∂u
∂t

n+ 1
2

∆t ≈
(un+1 − un)

∆t
∆t. (4.5)

Thus, ∫ n+1

n

∂u
∂t

dt ≈ (un+1 − un). (4.6)

In one hand, the variable n represents the instant of time in which the value of the

parameters is known. On the other hand, n+1 represents the parameters at a later time

t + ∆t in which the parameters are unknown.

The term on the right-hand side of the Equation 4.3 is analyzed using a second order

explicit method known as Adams-Bashforth scheme. Using this method, the function

R(u) is evaluated at two instants of time at which the parameters are already known: n

and n − 1. Thus, the temporal-discretized momentum equation reads

(un+1 − un) = ∆t
(
3
2

R(un) −
1
2

R(un−1)
)
− ∆t∇pn+1. (4.7)

68

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

Finally, the value for the ∆t must meet the Courant-Friedrichs-Lewy (CFL) condition [20].

In mathematics, the CFL condition is a necessary condition for convergence while solv-

ing certain partial differential equations. It arises in the numerical analysis of explicit

time integration schemes, when these are used for the numerical solution. As a conse-

quence, the time step must be less than a certain time in many explicit time-marching

computer simulations, otherwise the simulation will produce incorrect results. Thus, the

∆t must meet the following conditions

∆t
(
|ui|

∆xi

)
max
≤ Cconv,

∆t
(
ν

∆x2
i

)
max
≤ Cvisc,

where Cconv and Cvisc must be smaller than 1. It is recommended to use Cconv = 0.35

and Cvisc = 0.2.

4.2.2 Solution of the Momentum Equation

The pressure-velocity coupling in the momentum equation is solved by means of a

classical fractional step projection method (known as FSM) [21]. The FSM introduces a

predictor velocity, up, mathematically expressed as

up = un + ∆t
(
3
2

R(un) −
1
2

R(un−1)
)
. (4.8)

Thus, the Equation 4.7 can be expressed as following.

un+1 = up − ∆t∇pn+1. (4.9)

The velocity field at the instant of time n+1 must satisfy the continuity equation (Equation

69

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

3.34). Hence, if the divergence is applied into the Equation 4.9 as following

∇ · un+1 = ∇ · up − ∆t(∇ · ∇)pn+1, (4.10)

the term on the left-hand side of the resulting equation must be equal to zero. Then,

∇2 pn+1 =
1
∆t
∇ · up. (4.11)

The Equation 4.11 is known as Poisson equation. In order to numerically solve it, it

must be spatially discretized. There are several techniques for carrying out the spatial

discretization. In this project, the finite volume method is used. Thus, the values of

the physical properties are calculated at discrete control volumes within a discrete grid.

In the finite volume method, volume integrals of terms that contain a divergence are

converted to surface integrals using the divergence theorem (also known as Gauss

theorem). These terms are evaluated as fluxes at the surfaces of each finite volume.

Because the flux entering a given volume is identical to that leaving the adjacent volume,

this method is conservative.

The first step for numerically solving the Equation 4.11 by means of the finite volume

method is to integrate over a generic dimensionless control volume Ω small enough to

consider the variation of the parameters within the control volume as uniform as well as

the variation of the parameters over the faces of the control volume. Then,

∫
Ω

∇2 pn+1dΩ =
1
∆t

∫
Ω

(∇ · up)dΩ. (4.12)

The divergence theorem (also known as Gauss theorem) is used to recast volumetric

integrals into surface integrals as follows

∮
S

(∇pn+1
f) · n̂dS =

1
∆t

∮
S

(up
f · n̂)dS , (4.13)

where the sub-index f specifies that the parameter is evaluated at the faces, S f , of the

70

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

control volume.

Recall that the control volume is small enough to consider the variations of the param-

eters as uniform. Thus, the expression above can be written as following

∑
f∈F(c)

(∇pn+1
f) · n̂S f =

1
∆t

∑
f∈F(c)

(up
f · n̂)S f , (4.14)

where, applying the direct gradient evaluation results in

(∇pn+1
f) · n̂ =

∂pn+1
f

∂n
≈

pn+1
nb − pn+1

δnb
. (4.15)

The pressure pn+1 is evaluated at the center of the control volume and pn+1
nb is the

pressure at the center of the neighbor node with which it shares the same face f . In

addition, δnb is the distance from the center of the control volume to the center of the

neighbor node nb. Thus, the Equation 4.14 reads

∑
f∈F(c)

(
pn+1

nb − pn+1
) S f

δnb
=

1
∆t

∑
f∈F(c)

(up
f · n̂)S f . (4.16)

Notice that because of the use of the staggered mesh, the values of the velocities are

already evaluated at the faces of the pressure’s control volume.

Finally, the expression to obtain the new velocity field at time n + 1 is the Equation 4.9

which, after integrating over the control volume Ω and applying the Gauss theorem,

results in

un+1 = up −
∆t
Ω

∑
f∈F(c)

pn+1
f n̂S f . (4.17)

Notice that because of the use of the staggered mesh, the values of the pressure are

already evaluated at the faces of the velocity’s control volume.

At this point, the Equation 4.8 must be spatially discretized in order to be able to evaluate

the diffusive and the convective terms. Thus, the equation is integrated over the control

71

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

volume Ω as follows

∫
Ω

updΩ =

∫
Ω

undΩ + ∆t
∫

Ω

(
3
2

R(un) −
1
2

R(un−1)
)

dΩ. (4.18)

Recall that the control volume is small enough to consider the variations of the param-

eters as uniform. Thus, the equations above can be written as following

up = un +
∆t
Ω

∫
Ω

(
3
2

R(un) −
1
2

R(un−1)
)

dΩ. (4.19)

The integral of the term R(u) is analyzed below.

∫
Ω

R(u)dΩ = −

∫
Ω

(u · ∇)udΩ +
1

Re

∫
Ω

∇2udΩ. (4.20)

Using the divergence theorem, the term on the right-hand side of the equation above

result in

−

∫
Ω

(u · ∇)udΩ +
1

Re

∫
Ω

∇2udΩ = −

∮
S

u f (u f · n̂)dS +
1

Re

∮
S

(∇u f) · n̂dS . (4.21)

Then, since the control volume is small enough to consider the variations of the param-

eters as uniform, the expressions above can be written as following

∑
f∈F(c)

u f (u f · n̂)S f , (4.22)

1
Re

∑
f∈F(c)

(∇u f) · n̂S f . (4.23)

72

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

4.2.3 Analysis of the Convective Term

The convective term is the first term in the R(u) function and is mathematically ex-

pressed as ∑
f∈F(c)

u f (u f · n̂)S f . (4.24)

The product (u f · n̂)S f can be related to the flow rate (also called discharge), q̇ f , that is

the amount of fluid flowing through a surface per unit of time. Thus,

∑
f∈F(c)

q̇ f u f . (4.25)

Notice that in this term, the velocities are evaluated at the faces of the control volume

instead of being evaluated at the center. However, the velocities are only known at the

center of their control volumes.

Numerical schemes are designed in order to approximate the value of the parameters

from the center of the control volumes to its faces. There are many different numerical

schemes which can be suitable in different CFD applications. However, only the central

difference scheme (CDS) is introduced in this project as a general purpose. The CDS

is mathematically defined as

ϕ f = ϕ +
δ f

δnb
(ϕnb − ϕ), (4.26)

where ϕ is a generic parameter at the center of the control volume, ϕ f is the parameter

at the face f , and ϕnb is the parameter at the center of the neighbor node, nb, with which

it shares the face f . In addition, δ f is the distance from the center of the control volume

to the face f and δnb is the distance from the center of the control volume to the center

of the neighbor node nb.

73

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

4.2.4 Analysis of the Diffusive Term

The diffusive term is the second term on the R(u) function and is mathematically ex-

pressed as
1

Re

∑
f∈F(c)

(∇u f) · n̂S f . (4.27)

There are many different ways to calculate the diffusive term. In this case, the direct

gradient evaluation has been used to solve the diffusive term as follows

1
Re

∑
f∈F(c)

(∇u f) · n̂S f =
1

Re

∑
f∈F(c)

(
∂u f

∂n

)
S f ≈

1
Re

∑
f∈F(c)

(unb − u)
δnb

S f , (4.28)

where u is the velocity at the center of the control volume, u f is the velocity at the face

f , and unb is the velocity at the center of the neighbor node, nb, with which it shares

the face f . In addition, δnb is the distance from the center of the control volume to the

center of the neighbor node nb.

4.2.5 Operator-Based Formulation

Below is summarized the algorithm which should be used in order to solve the momen-

tum equation for each time step.

1. Evaluate the predictor velocities:

up = un +
∆t
Ω

(
3
2

R(un) −
1
2

R(un−1)
)
,

where

R(u) = −
1

Re

∑
f∈F(c)

(unb − u)
δnb

S f +
∑

f∈F(c)

q̇ f u f .

74

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

2. Calculate the pressure field by solving the Poisson equation:

∑
f∈F(c)

(
pn+1

nb − pn+1
) S f

δnb
=

1
∆t

∑
f∈F(c)

(up
f · n̂)S f .

3. Calculate the velocity field at time n + 1:

un+1 = up −
∆t
Ω

∑
f∈F(c)

pn+1
f n̂S f .

4. Evaluate the ∆t based on the CFL condition:

∆t = CFL(un+1)

If the algorithm is carefully observed, it is easy to see that the parameters of each node

depend only on the parameters of its neighbors. In addition, since a Cartesian grid

is used, the nodes and the neighbors are easily located. Then, for a generic control

volume (i, j), the neighbors (i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1) correspond to the

east, west, north and south couplings respectively. In order to make benefit of this fact,

the algorithm above may be expressed using algebraic operators (e.g. the dotp, axpy

or smvp) [22].

In a matrix-vector notation, the finite-volume discretization of the Navier-Stokes equa-

tions can be written as

Ω
(un+1 − un)

∆t
=

(
3
2

R(un) −
1
2

R(un−1)
)
−ΩGpn+1 (4.29)

Mun+1 = 0. (4.30)

where

R(u) = −Cu + Du.

The vectors p = (p1, p2, ..., pn) ∈ �n and u ∈ �3n are the pressure and velocity fields

and n is the number of control volumes. The matrix Ω is a diagonal matrix with the

75

CHAPTER 4. NUMERICAL SOLUTION OF THE GOVERNING EQUATIONS

sizes of the control volumes on the diagonal, C and D are the convection and diffusion

operators, and finally, M and G are the divergence and gradient operators respectively.

76

Chapter 5

Abstract Modelling of Hardware

Computer Hardware is the set of tangible elements that constitutes a computer system

such as the monitor, mouse, keyboard, computer data storage, graphic cards, sound

cards, memory, motherboard, and so on. In contrast, software is the set of instructions

that can be stored and run by hardware.

In numerical analysis, computing systems are used as calculation tools. Then, the

hardware parameters and features that have a direct impact on the calculation time

and efficiency will be discussed, from an abstract point of view, throughout this chapter.

Thus it can be studied as a black box capable to perform simple algebraic operations

regardless of the internal operations performed by the system.

5.1 Central Processing Unit

The active part of the computer, the part that does calculations and controls all the other

components, is called processor or central processing unit (CPU). The CPU contains

electronic clocks that control the timing of all operations; electronic circuits that carry out

77

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

arithmetic operations like addition and multiplication; circuits that identify and execute

the instructions that make up a program; and circuits that fetch the data from memory.

Instructions and data are stored in main memory. The CPU fetches them as needed.

The CPU in modern computers is physically implemented as a single silicon chip. This

chip has engraved on it more than a million of transistors and the interconnecting wiring

that define the CPU’s circuits. The chip has more than a hundred of pins around its

rim. Some of the pins are connection points to the bus, others are connection to elec-

trical power supply. The bus is a communication system that transfers data between

components inside a computer.

The most relevant characteristics of the CPU used for this project are listed in Table 5.1.

The number of cores is higher than one if the processor is multi-core, that is a single

chip with two or more independent processing units within. The clock speed is defined

as the number of cycles per second measured in Hertz, that the CPU is able to perform.

The CPU’s memory bandwidth is the rate at which the processor is able to read/write

data from/to main memory. The cache memory and the instructions are detailed in the

following sections.

CHARACTERISTIC VALUE

Manufacturer Intel
Model i5 4670k

Architecture Haswell
Number of Cores 4

Clock Speed 4.00 GHz
Cache L1 Size 64 KB/core
Cache L2 Size 256 KB/core
Cache L3 Size 6 MB

Memory’s Bandwidth 25.60 GB/s

Table 5.1: Characteristics of the available CPU.

78

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

5.2 Memory Hierarchy

There are many different types of memory inside a computer. The two major differences

between them is their size (also called capacity) and speed (also called bandwidth).

The size of the memory is the amount of binary data they are able to store, measured

in Bytes (B). The speed is the rate at which they are able to write and read binary data

measured in Bytes per second (B/s).

Figure 5.1: Memory hierarchy scheme.

Imagine a student who is going to solve a mathematical problem. The room where the

student is going to work has a big shelf with a variety of books, pictures and other objects

which he does not need to study. There is a drawer next to the table. The student stores

the schoolbooks, notebooks and pens there. When the student starts working, he gets

a schoolbook and a pen from the drawer and put they on the desk. Finally, the student

writes the statement of the problem in a blank sheet and starts solving it, using his brain

for mental calculations. Notice that, as the storing element is closer to the student, the

79

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

capacity is smaller but accessing, searching and getting information is easier and faster.

Nowadays, hard disk drives (HDD) or mechanical drives are the slowest and cheapest

devices in the hierarchy. They are dedicated to store data which do not require access-

ing very often, such as backups, movies, images, installers, etc. The next devices in the

ranking are the solid state drives (SSD) and they usually store the operative system and

program files in order to improve the performance of the computers. The next type of

memory in the hierarchy is random access memory (RAM), also known as main mem-

ory. Main memory is used by the programs during runtime in order to store the data

they need for operating. It is much faster than SSD devices. The cache is a smaller,

faster memory which stores copies of the data from frequently used main memory ad-

dresses. Further, cache memory can be subdivided into different levels, usually L1,

L2 and L3. Finally, the fastest and also the most expensive types of memory are the

processor’s registers. The CPU uses them to store the data that it needs in order to

perform instructions and operations.

When the processor needs to read from or write to an address in main memory, it first

checks whether a copy of that data is in the cache. If so, the processor immediately

reads from or writes to the cache, which is much faster than reading from or writing to

main memory. If cache were large, the CPU would waste much time checking inside it.

In one hand, the major reason not to make all memories as big as possible is about data

logistics: smaller memories are faster to check. On the other hand, the main reason not

to make all memories as fast as possible is no other economic: the price of the memory

increases proportionally to its speed.

CHARACTERISTIC VALUE

Manufacturer G.Skill
Model Sniper

Memory Speed 1866 MHz (14.9 GB/s)
Channels 2

Total Bandwidth 29.80 GB/s

Table 5.2: Characteristics of the available main memory.

80

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

5.3 Throughput

In general terms, throughput is the rate of production or the rate at which something

can be processed. In computational science, the throughput of a computing system

can be quantified by calculating the number of floating point operations (FLOP) that

the processor is able to execute per second, or also by measuring the amount of data

flowing through the CPU.

Imagine you have a factory with four employees. Each employee makes a different

product: the first manufactures wooden furniture, the second manufactures electronic

devices, the third manufactures clothing and the fourth manufactures plastic bottles. The

rate of production of each employee is one product per day, then the total throughput

of the factory as system of production is four products per day. However, this value is

not totally representative of the factory and should be considered cautiously to avoid

confusion. If a customer requests the production of wooden furniture, the factory’s pace

of production for the specific order is constrained to one product per day because only

one employee is able to manufacture wooden furniture.

In the same way the total throughput value can be calculated for a given computing

system but this usually is not representative. Then an specific maximum throughput

must be defined for every application in order to correctly evaluate its performance.

Before starting this section, the acronyms used through it are introduced:

• TPP (Theoretical Peak Performance): Is the absolute maximum throughput of a

processor.

• TMP (Theoretical Maximum Performance): Is the maximum throughput of a pro-

cessor when running an specific application which may not take advantage of all

its features.

81

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

• TBP (Theoretical Bounded Performance): Is the maximum throughput of a pro-

cessor when it is bounded by the speed of some component.

• REP (Real Performance): Is the real performance obtained when an application

is run.

5.3.1 Theoretical Peak Performance, TPP

The theoretical peak performance (TPP) of a processor is usually expressed as the

theoretical maximum rate of execution of 64-bit floating point operations, either addition

or multiplication, per second. The acronym FLOP is used to refer the floating-point

operations and the acronym FLOPS is used to refer FLOP per second (also flop/s).

Then, the TPP is the result of the product of two characteristics of the CPU as expressed

in Equation 5.1,

TPP = Clock Speed · IPCARCH , (5.1)

where IPCARCH is the maximum number of instructions per cycle that the processor is

able to execute depending on its architecture. The clock speed is the amount of cycles

per second at which the processor is able to operate measured in Hertz. Then, the

theoretical peak performance of the processor described in Table 5.1 (Intel i5 4670k) is

calculated as follows,

TPP = 4.000GHz · (16 · 4) = 256.000GFLOPS. (5.2)

The IPCARCH of the Haswell architecture is 16 and it is achieved when the CPU per-

forms two 256-bit FMA instructions per cycle (see [23]). The IPCARCH is multiplied by 4

because the processor is quad-core.

82

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

5.3.2 Theoretical Maximum Performance, TMP

Many algorithms and applications do not allow to implement the necessary instructions

to obtain the IPCARCH of a given CPU’s architecture (e.g. the FMA instruction cannot be

implemented in an application which only performs the addition of two vectors because

FMA involves both addition and multiplication). For this reason, defining the theoreti-

cal maximum performance (TMP) for specific applications or implementations that are

going to run in a specific computing system is convenient for further performance eval-

uation. The expression for TMP is very similar to the expression for TPP. The only

difference lies in the IPC value which in this case is specific for the application. Thus,

the expression for the TMP is

TMP = Clock Speed · IPCAPP. (5.3)

5.3.3 Instruction Pipelining

Imagine a car washing with five services: 1) rinse, 2) soap, 3) scrub, 4) rinse, 5) dry.

Each service is done in a different room and takes 5 minutes. If there is only one

customer allowed at the same time in the whole car washing, the throughput of the car

washing would be one car every 25 minutes. However, if one customer is allowed in at

the same time in every different service, the throughput would become one car every 5

minutes.

Instruction pipelining is a technique for improving the IPC of the applications that imple-

ments a form of parallelism called instruction-level parallelism within a single core of the

CPU. The processor needs many cycles in order to complete an instruction but rather

than processing each instruction sequentially (finishing one instruction before starting

the next), each instruction can be split up into a sequence of steps (similar to the car

washing service) so different steps can be executed in parallel and instructions can be

83

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

processed concurrently, starting the first step of a new instruction before finishing the

last step of the previous instruction. The Figure 5.2 represents how an instruction that

can be split up into five steps is processed. Each color represents a different instruction.

In the clock cycle number 0, all instructions are waiting. In the clock cycle number 1,

the first instruction begins being executed but the other four instructions still wait. In the

clock cycle number 2, the first instruction jumps to the second step hence the second

instruction begins being executed and so on. In the clock cycle number 5, the pipeline

is completely full: all instructions are being executed on a different step.

Figure 5.2: Instruction pipelining.

The most common and easy technique to help the processor to pipeline its operations

is called loop unrolling. Loop unrolling is a loop transformation technique that aims to

optimize a program’s execution speed at the expense of its binary size. Loops are re-

written as a repeated sequence of similar independent statements. The transformation

can be undertaken manually by the programmer or by an optimizing compiler. The goal

of loop unrolling is to increase a program’s speed by increasing the IPC or reducing

(or eliminating) instructions that control the loop such as pointer arithmetic and ”end of

84

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

loop” tests on each iteration. Loop unrolling also reduces branch penalties (improving

pipelining) and hides latencies, in particular, the delay in reading data from memory

[24].

The number of steps in which an operation can be split up depends on the operation

itself. Thus the addition operation can be split up into 3 steps and multiplication into 5

[25]. In other words, to complete the addition takes three processor’s cycles and the

multiplication takes five. This way, if operations are not pipelined, then IPCADD is 1/3

and IPCMUL is 1/5. In addition, at least three independent operations are required to

saturate the pipeline for the addition and five for the multiplication.

Many algorithms involve a large set of independent operations thus the operations can

be pipelined automatically by the compiler (e.g. in the generalized vector addition, the

result of one iteration does not depend on the result of the previous one). In contrast,

there are some algorithms which involve dependent operations hence its operations are

difficult to pipeline and in addition it usually requires the creation of temporary variables

(e.g. in the dot product, each iteration calculates the product of two numbers then the

result is added to the previous result). If operations are totally pipelined, then both

IPCADD and IPCMUL values are 1.

Below is an exemplification of how to pipeline the operations in order to improve its IPC

and thus its specific theoretical maximum performance. The Code 5.1 shows a simple

loop which performs N times the addition operation on the same variable hence the

operations are dependent and not pipelined.

double a = 1.5;

double result = 0;

for (int i=0; i<N; ++i) {

result = result + a;

}

Code 5.1: Study of pipelining. One pipelined addition.

85

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

The TMP for the algorithm above is calculated as follows

TMP = 4.000GHz ·
1
3

= 1.333GFLOPS, (5.4)

where 1/3 is the specific IPCADD for this application.

The Code 5.2 shows an unrolled loop which performs N times the addition operation

distributed over two different temporary variables in order to make the operations in-

dependent. In this case two operations are pipelined thanks to the creation of two

temporary variables.

double a = 1.5;

double result = 0;

double result_tmp[2] = {0};

for (int i=0; i<N/2; ++i) {

result_tmp[1] = result_tmp[1] + a;

result_tmp[2] = result_tmp[2] + a;

}

result = result_tmp[0] + result_tmp[1];

Code 5.2: Study of pipelining. Two pipelined additions.

The TMP of the algorithm above is calculated as follows

TMP = 4.000GHz ·
2
3

= 2.667GFLOPS, (5.5)

where 2/3 is the specific IPCADD for the second application.

The Code 5.3 shows an unrolled loop which performs N times the addition operation

distributed over three different temporary variables in order to make the operations in-

dependent. In this case three operations are pipelined, then the pipeline is already

saturated.

double a = 1.5;

double result = 0;

86

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

double result_tmp[3] = {0};

for (int i=0; i<N/3; ++i) {

result_tmp[0] = result_tmp[0] + a;

result_tmp[1] = result_tmp[1] + a;

result_tmp[2] = result_tmp[2] + a;

}

result = result_tmp[0] + result_tmp[1] + result_tmp[2];

Code 5.3: Study of pipelining. Three pipelined additions.

The TMP of the algorithm above is calculated as follows

TMP = 4.000GHz · 1 = 4.000GFLOPS, (5.6)

where 1 is the specific IPCADD for the third application.

It is important to notice that all three codes above are three different implementations of

the same application but the TMP of the third application is greater than the second’s as

well as the TMP of the second application is greater than the first’s. However, IPCADD

cannot be further increased by only unrolling more the loop because the third application

had already saturated the pipeline.

The reflection above can also be done for the multiplication operation. The Table 5.3

shows the theoretical maximum performance depending on the number of operations

pipelined (the acronym POPS is used hereinafter to refer to pipelined operations). As 1

is the maximum value of IPC for this application, the maximum TMP is 4.000 GHz.

In order to evaluate all the concepts mentioned above, one specific benchmark appli-

cation have been designed (the Code 5.4 shows the kernel of the application). This

program preforms a large number of additions or multiplications, distributed over a spe-

cific number of independent variables. The application is run N times, increasing n (the

number of independent variables) from 1 to N; every time calculates the elapsed time

87

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

POPS TMPADD TMPMUL

1 1.333 0.800
2 2.667 1.600
3 4.000 2.400
4 3.200
5 4.000

Table 5.3: Study of pipelining. Theoretical maximum performance.

and the performance (the code is designed in order to allow the compiler to unroll the

operating loop in order to evaluate performance vs POPS) measured in GFLOPS. Fi-

nally, the program prints the results in a text file and a gnuplot script plots the graphics

with the results. Notice that the number of iterations performed, ITER, must be large,

otherwise the processor finish all the work quickly without being able to quantify the

elapsed time. Since the data size is very small (160 bytes at most), it fits into the pro-

cessor’s registers. Besides variables are read just once, 100,000,000 operations are

performed hence the reading time is insignificant. This phenomena is called spatial

locality.

int N = 10;

double result;

long int ITER = 1e8;

for (int n=1; n<=N; ++n) {

result = 0.0;

//creates vectors with ’n’ independent elements within

vector<double> x(n, 1.0);

vector<double> y(n, 2.0);

//starts the timer

timer = STOPTIME ();

for (long int j=0; j<(ITER/n); ++j) {

//’n’ independent additions performed every iteration

//this loop can be unrolled by compiler

for (int i=0; i<n; ++i) {

x[i] = x[i] + y[i];

}

}

//stops the timer and calculates elapsed time

88

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

timer = STOPTIME () - timer;

for (int i=0; i<n; ++i) {

result = result + x[i];

}

}

Code 5.4: Study of pipelining. The benchmark application.

The results obtained from the benchmark are shown in Table 5.4 and in the graphic in

Figure 5.3, expressed in GFLOPS. It can be observed from the that the processor is

performing the operations as predicted in 5.3. The results for higher POPS values are

listed in order to confirm that performance is limited.

POPS REPADD REPMUL

1 1.328 0.796
2 2.656 1.592
3 3.988 2.392
4 3.988 3.192
5 3.988 3.984
6 3.988 3.988
7 3.996 3.988
8 3.988 3.988
9 3.988 3.988
10 3.980 3.972

Table 5.4: Study of pipeline. The benchmark results.

89

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Figure 5.3: Study of pipeline. The benchmark results.

5.3.4 Fused Multiply-Add

The fused multiply-add (FMA) instructions allow the processor to perform both addition

and multiplication in the same cycle. In other words, every FMA operation requires a

single cycle to perform two FLOP instead of one. Then, if the algorithm requires both

addition and multiplication operations to be done simultaneously, the FMA instructions

should double the theoretical maximum performance of the application. The number of

cycles needed to finalize the FMA operation is five so it can be split up into 5 steps.

In other words, to complete the FMA instruction requires 5 processor’s cycles. This

way, if FMA is not pipelined, then IPCFMA is 2/5. In addition, at least five independent

instructions are required to saturate the pipeline for the FMA.

90

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

The Code 5.5 shows a simple loop which performs N times the FMA operation on the

same variable hence the operations are dependent and not pipelined.

double a = 1.5;

double b = 2.0;

double c = 3.0;

double result = 0;

for (int i=0; i<N; ++i) {

result = a + b*c;

}

Code 5.5: Study of FMA. One pipelined operation.

The TMP for this algorithm is calculated as follows

TMP = 4.000GHz ·
2
5

= 1.600GFLOPS, (5.7)

where 2/5 is the specific IPCFMA for this application.

Similarly to Section 5.3.3, the Code 5.5 can be unrolled in order to improve its specific

IPCFMA. The maximum value for IPCFMA in this case is 10/5. The Table 5.5 shows

the theoretical maximum performance depending on the number of POPS. As 2 is the

maximum value of IPC for this application, the maximum TMP is 8.000 GHz.

POPS TMPFMA

1 1.600
2 3.200
3 4.800
4 6.400
5 8.000

Table 5.5: Study of FMA. Theoretical maximum performance.

In order to evaluate the effects of the implementation of FMA and confirm that it is ac-

tually doubling the performance of the application, one specific benchmark application

have been designed (see Code 5.6). This program preforms a large number of FMA

91

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

instructions, distributed over a specific number of independent variables. The applica-

tion is run N times, increasing n (the number of independent variables) from 1 to N;

every time calculates the elapsed time and the performance (the code is designed in

order to allow the compiler to unroll the operating loop in order to evaluate performance

vs POPS) measured in GFLOPS. Finally, the program prints the results in a text file

and a gnuplot script plots the graphics with the results. Notice that the number of it-

erations performed, ITER, must be large, otherwise the processor finish all the work

quickly without being able to quantify the elapsed time. Since the data size is very small

(320 bytes at most), it fits into the processor’s registers. Besides variables are read just

once, 100,000,000 operations are performed hence the reading time is insignificant.

This phenomena is called spatial locality.

int N = 10;

double result;

long int ITER = 1e8;

for (int n=1; n<=N; ++n) {

result = 0.0;

//creates vectors with ’n’ independent elements within

vector<double> x(n, 1.0);

vector<double> y(n, 2.0);

vector<double> z(n, 3.0);

vector<double> r(n, 0);

//starts the timer

timer = STOPTIME ();

for (long int j=0; j<(ITER/n); ++j) {

//’n’ independent FMA performed every iteration

//this loop can be unrolled by compiler

for (int i=0; i<n; ++i) {

r[i] = x[i] + y[i]*z[i];

}

}

//stops the timer and calculates elapsed time

timer = STOPTIME () - timer;

for (int i=0; i<n; ++i) {

result = result + r[i];

}

}

92

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Code 5.6: Study of FMA. The benchmark application.

The results obtained from the benchmark are shown in Table 5.6 and in the graphic

in Figure 5.4, expressed in GFLOPS. The results for higher POPS values are listed

in order to confirm that performance is limited. It can be observed from the results

that the FMA is doubling the performance of the simple operations as predicted in 5.5.

However, it should be noted that the FMA operation is presenting a small overhead

when the pipeline is saturated, performing at 7.680 instead of 8.000 GFLOPS (about

96%).

POPS REPFMA

1 1.596
2 3.192
3 4.800
4 6.360
5 7.560
6 7.680
7 7.680
8 7.680
9 7.680
10 7.680

Table 5.6: Study of FMA. The benchmark results.

93

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Figure 5.4: Study of FMA. The benchmark results.

5.3.5 Single Instruction Multiple Data

The SIMD (Single Instruction Multiple Data) extensions enables the CPU to perform the

same instruction on multiple data using, for example, a 128-bit register in which two

64-bit numbers can be allocated. Then, every clock cycle the instructions are applied

not to the single numbers but to the entire register. The Figure 5.5 represents how an

instruction is performed on a 128-bit register

Nowadays, the size of SIMD registers is normally 128, 256 or even 512 bits. The stream-

ing SIMD instructions 2 (SSE2) is a particular set of instructions that allows to perform

addition and multiplication among many other instructions on 128-bit registers since

2001. These instructions can greatly increase performance when exactly the same in-

94

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Figure 5.5: Study of SIMD. Scheme of a SSE2 operation.

structions are to be performed on multiple data objects. SSE also aims to allow the

processor to manage data faster since the transfers are also done in bigger blocks.

There are newer and more advanced SIMD sets such as SSE3 (2004), SSE4 (2006),

AVX (2008) and so on. However, in order to make the code portable to older architec-

tures, only SSE2 is used in this project.

The number of cycles needed to finalize the SSE2 addition is three so it can be split

up into 3 steps. In a similar way, the number of cycles needed to finalize the SSE2

multiplication is five so it can be split up into 5 steps. In other words, to complete the

SSE2 addition instruction requires 3 processor’s cycles and the SSE2 multiplication

requires 5. This way, if the instructions are not pipelined, then IPCSSE2ADD is 2/3 and

IPCSSE2MUL is 2/5. In addition, at least three independent instructions are required to

saturate the pipeline for the SSE2 addition and five for the SSE2 multiplication.

The Code 5.7 shows a simple loop which performs N times the SSE2 addition instruction

on the same register hence the operations are dependent and not pipelined.

__m128d a;

__m128d b;

a _mm_set_pd (0.0, 0.0);

b _mm_set_pd (1.5, 1.5);

for (int i=0; i<N; ++i) {

95

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

a = _mm_add_pd(a, b);

}

Code 5.7: Study of SIMD. One pipelined operation.

The TMP for this algorithm is calculated as follows

TMP = 4.000GHz ·
2
3

= 2.667GFLOPS, (5.8)

where 2/3 is the specific IPCSSE2ADD for this application.

Similarly to Section 5.3.3, the Code 5.7 can be unrolled in order to improve its specific

IPCSSE2. The maximum value for both IPCSSE2ADD and IPCSSE2MUL in this case is 2.

The Table 5.7 shows the theoretical maximum performance for both SSE2 addition and

multiplication depending on the number of POPS. As 2 is the maximum value of IPC for

this application, the maximum TMP is 8.000 GHz.

POPS TMPSSE2ADD TMPSSE2MUL

1 2.667 1.600
2 5.334 3.200
3 8.000 4.800
4 6.400
5 8.000

Table 5.7: Study of SIMD. Theoretical maximum performance.

In order to evaluate the effects of the implementation of SSE2 instructions and confirm

that it is actually doubling the performance of the application, one specific benchmark

application have been made (see Code 5.8) by adapting the input data of the application

into 128-bit registers and using the specific SSE2 addition and multiplication instruc-

tions. The FMA has not been adapted to SSE2 extensions because it is a relatively new

feature, available since 2013 with the launch of Intel Hashwell architecture and, as ex-

posed before the code must be portable to older architectures. The program preforms

a large number of SSE2 instructions, distributed over a specific number of independent

96

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

registers. The application is run N times, increasing n (the number of independent reg-

isters) from 1 to N; every time calculates the elapsed time and the performance (the

code is designed in order to allow the compiler to unroll the operating loop in order to

evaluate performance vs POPS) measured in GFLOPS. Finally, the program prints the

results in a text file and a gnuplot script plots the graphics with the results. Notice that

the number of iterations performed, ITER, must be large, otherwise the processor finish

all the work quickly without being able to quantify the elapsed time. Since the data size

is very small (320 bytes at most), it fits into the processor’s registers. Besides variables

are read just once, 100,000,000 operations are performed hence the reading time is

insignificant. This phenomena is called spatial locality.

int N = 10;

double result;

long int ITER = 1e8;

for (int n=1; n<=N; ++n) {

result = 0.0;

//creates vectors with ’n’ independent elements within

__m128d rx[n];

__m128d ry[n];

//starts the timer

//creates vectors with ’2*n’ independent elements within

vector<double> x(2*n,1.0);

vector<double> y(2*n,2.0);

timer = STOPTIME ();

for (long int j=0; j<(ITER/n); ++j) {

//’n’ independent FMA performed every iteration

//this lop can be unrolled by compiler

for (int i=0; i<n; ++i) {

rx[i] = _mm_loadu_pd(&x[2*i]);

ry[i] = _mm_loadu_pd(&y[2*i]);

rx[i] = _mm_add_pd(rx[i],ry[i]);

}

}

//stops the timer and calculates elapsed time

timer = STOPTIME () - timer;

for (int i=0; i<n; ++i) {

result = result + ((double*)&rx[i])[0] + ((double*)&rx[i])[1];

97

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

}

}

Code 5.8: Study of SIMD. The benchmark application.

The results obtained from the benchmark are shown in Table 5.8 and in the graphic

in Figure 5.6, expressed in GFLOPS. The results for higher POPS values are listed in

order to confirm that performance is limited. It can be observed from the results that

the behavior seems random and is different than predicted in 5.7. In one hand, the

performance is not depending on the number of POPS. This might be caused by auto-

matic optimizations made by the compiler. On the other hand, both SSE2 addition and

multiplication present a small overhead when using SSE2: the maximum throughput

obtained is 7.360 instead of 8.000 (about 92%).

POPS REPSSE2ADD REPSSE2MUL

1 7.320 7.080
2 5.960 6.000
3 7.080 7.080
4 7.080 7.080
5 7.240 7.240
6 7.360 7.360
7 7.000 7.000
8 7.080 7.080
9 7.200 7.160
10 4.906 4.960

Table 5.8: Study of SIMD. The benchmark results.

98

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Figure 5.6: Study of SIMD. The benchmark results.

5.3.6 Theoretical Bounded Performance, TBP

The value obtained for the TPP in the Equation 5.2 is very attractive, however it is not

possible to reach in most of the cases because it was not taken into account the time re-

quired for reading or writing data, which in most applications represents the bottleneck

of the performance. In computational science, a bottleneck occurs when the capacity

of a computational application or a computing system is severely limited by a single

component. A concept that plays an important rol when analyzing performance and

bottlenecks is the arithmetic intensity (AI), that is the ratio of total floating-point opera-

tions (measured in FLOP) to total data movement (measured in Bytes). The arithmetic

intensity depends on the mathematical formulation of the operation. Recall that the intel

i5 4670k reaches its TPP when performing eight FMA instructions per cycle. The AI of

99

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

the FMA operation is

AIFMA =
2flop

16Bytes
= 0.125

flop
Byte

. (5.9)

The expression for calculating the theoretical bounded performance is

TBP = Bandwidth · AI. (5.10)

A computational application is memory bounded if the computing system’s ratio of TPP

to memory bandwidth is equal or higher than the algorithm’s AI or, in other words if TBP

< TMP. Recall from Section 5.2 that there are many different types of memories within

a computing system so that there will be many different values for the TBP depending

on which type memory needs to be accessed. The Figure 5.7 represents for a generic

application the variation of its bounded performance vs the data size. As data size

becomes bigger, larger and thus slower memories are needed. The transition from one

to another value of TBP is not drastic but progressive because the smaller memories

are still in use. Since most of applications in computational science are main-memory

bounded, then it might be interesting to compare the TBPRAM of the Intel i5 4670k when

performing the same eight FMA operations as in Equation 5.2. For this purpose, the

TBPRAM is calculated as follows,

TBPRAM = 25.6GB/s ·
8flop

128Byte
= 3.2GFLOPS. (5.11)

It is very disappointing that the value obtained is about 1% of the processor’s TPP

because most of the applications in computational science are main-memory bounded

because involve operations and algorithms with very low arithmetic intensity and big

data sizes (e.g. the AI of the dot product is 0.125 and the AI of the generalized vector

addition is 0.083).

In order to demonstrate the existence of the bottleneck described above, the elapsed

time needed for calculating the dot product of two arrays of 1,000,000 elements each is

100

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

Figure 5.7: Application’s Performance vs Data Size.

going to be both theoretically and experimentally calculated. The data size of two arrays

of 1,000,000 elements is calculated as follows,

SIZEdata = 2 · 8Bytes · 1, 000, 000 = 16, 000, 000Bytes ≈ 16MBytes. (5.12)

16 MB is greater than the capacity of the cache hence the performance is supposed to

be main-memory bounded. Then, the TBPRAM for the dot product can be taken from

Equation 5.11 since the AI for both applications is the same. This way, the minimum

elapsed time required for performing the 2,000,000 FLOP of the dot product is calcu-

lated in Equation 5.13 as follows,

t =
2, 000, 000flop
3.2GFLOPS

= 0.000625s. (5.13)

Finally, a simple C++ application is designed for experimentally timing the execution of

the dot product. This application performs 1,000 times the dot product of two arrays of

101

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

1,000,000 elements each, then measures the average elapsed time and calculates the

real performance or REP and finally prints the result in the shell comparing it to the TBP

(see Code 5.9).

$ TBP: 3.200 GFLOPS, 0.000625 seconds

$ REP: 2.546 GFLOPS, 0.000786 seconds

$ DEVIATION: 25.699%

Code 5.9: TBP vs REP for 1,000,000 elements dot product.

The obtained result was even worse than the result predicted in Equation 5.13. The

deviation in the result might be caused by the fact that a single core of a multi-core CPU

is not able to obtain full advantage of the memory bandwidth. This issue is analyzed

more deeply in the Chapter 6.

5.4 Conclusions

Before finishing this chapter, some conclusions obtained from the study above are ex-

posed.

• The AI (arithmetic intensity) is an important parameter for analyzing whether an

application is memory bounded or computing bounded.

• The IPC (instructions per cycle) is an important parameter for calculating the TPP

(theoretical peak performance) and TMP (theoretical maximum performance).

• It is a must to pipeline the operations in order to optimize the IPC.

• Using FMA doubles the IPC of the application and also its TMP.

• Using SIMD instructions increases the IPC and the TMP of an application. It also

allows the compiler to optimize the pipelining of the code.

102

CHAPTER 5. ABSTRACT MODELLING OF HARDWARE

• The AI of an algorithm depends on the algorithm’s mathematical formulation and

not on the application.

• Most of the applications in computational science will be main-memory bounded

because involve operations and algorithms with very low arithmetic intensity and

big data sizes.

• In a main-memory bounded application, the most significant optimization is to

minimize as much as possible the data movements. In addition, to design efficient

data structures is a must.

• In a main-memory bounded application, optimizing the IPC is not worth it: the

REP does not depend on the IPC but on the AI. However, some optimizations

may help the processor to read or write data in a more efficient way.

• When a computational application starts running, the data is created and stored

into the main memory. If the program iterates many times over the same set of

variables, the performance will be bounded by the speed of the memory in which

the data fits. If the data size is small (the specific size depends on the processor) it

may fit into the processor’s caches or even in its registers. Then, the variables are

read just once from main memory hence the spatial locality phenomena happens:

reading or writing time becomes insignificant.

In conclusion, the major bottleneck in computational science is the speed of reading

from and writing to main memory. For this reason, the IPC of the algorithms must be as

high as possible and the computational applications must be optimized by minimizing

the data movement. The objective is to obtain a REP similar to the TBP, which means

that the bottleneck is saturated.

103

Chapter 6

XLF, the Linear Algebra Library

In this chapter, the development process of the algebraic operators of the XLF library

is detailed (XLF is how the library designed for this project is named). First of all, the

mathematical formulation is introduced. Then, the computational cost of the operators

is analyzed. Finally, the performance evaluation is carried for each implementation of

the operators.

6.1 The XLF File Structure

The total number of C++ lines written in this project is larger than 5,000. For this rea-

son, the code has been divided into many different files. The Figure 6.1 shows the

file structure of the XLF library, and the Figure 6.2 shows the file structure of the XLF

benchmark.

In order to ensure portability to the different computers that have been used, the make-

file includes three different settings: Ubuntu + Intel, RedHat + AMD, SuSe11 + Intel.

104

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.1: File structure of the XLF library.

105

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.2: File structure of the XLF benchmark.

106

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

6.2 Implementation of Operators

The objective of this section is to traduce the mathematical form of the operators into

C++ language so that the computer is able to perform the calculations. For a better

understanding of the sparse matrix-vector product, see Section 2.1 in which sparse

matrices and its different types of structures are analyzed.

6.2.1 Dot Product

The dot product or scalar product is an algebraic operation that takes two equal-length

sequences of numbers and returns a single number, which is the sum of the products

of the corresponding entries of the two sequences of vectors. The name dot product

is derived from the centered dot (·) that is often used to designate this operation; the

alternative name, scalar product, emphasizes that the result is a scalar instead of a

vector. The name chosen for programming this operator in the project’s library is dotp.

The dot product of the vectors

x = (x1, x2, · · · , xn)

and

y = (y1, y2, · · · , yn)

is defined as

x· y = x1 · y1 + x2 · y2 + · · · + xn · yn (6.1)

or

x· y =

n∑
i=1

xi · yi. (6.2)

The Code 6.1 shows the most basic implementation of the dot product in C++ language.

int N;

107

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

int sum = 0;

vector<double> x(N, 1.0);

vector<double> y(N, 2.0);

for (int i=0; i<N; ++i) {

sum = sum + x[i]*y[i];

}

Code 6.1: Algorithm DOTP (Simple).

6.2.2 Generalized Vector Addition

The generalized vector addition or linear combination is an algebraic operation that

takes two equal-length sequences of numbers and returns another equal-length se-

quence of numbers. The returned sequence is the result of multiplying all the numbers

of one of the sequences by a scalar then adding the corresponding element of the other

sequence. The name chosen for programming this operator in the project library is

axpy, and it refers to the form of the operation a · x + y. Then, considering the following

set of vectors

(ei)i∈n = ((δi j) j∈n)i∈n,

x = (x1, x2, · · · , xn),

y = (y1, y2, · · · , yn)

and the real scalar

a ∈ �,

the generalized vector addition is defined as

a · x + y = (a · x1 + y1) · e1 + (a · x2 + y2) · e2 + · · · + (a · xn + yn) · en (6.3)

108

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

or

a · x + y =

n∑
i=1

(a · xi + yi)ei. (6.4)

The Code 6.2 shows the most basic implementation of the dot product in C++ language.

int N;

double a = 3.0;

vector<double> x(N, 1.0);

vector<double> y(N, 2.0);

for (int i=0; i<N; ++i) {

y[i] = y[i] + a*x[i];

}

Code 6.2: Algorithm AXPY (Simple).

6.2.3 Sparse Matrix-Vector Product

The matrix-vector product is an algebraic operation that takes a vector and a matrix;

the matrix must have the same number of columns as elements has the vector. The

matrix-vector product returns a vector with the same number of elements as rows has

the matrix. Each element of the resulting vector is the dot product of every matrix row

and the vector. The name chosen for programming this operator in the project library is

smvp. Then, considering the following matrix

A =

a b 0

c d e

0 f g

109

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

and the vector

x =

x1

x2

x3

 ,

the matrix-vector product is defined as

A · x =

a · x1 + b · x2

c · x1 + d · x1 + e · x2

f · x1 + g · x2

 (6.5)

As exposed in Section 2.1, the coefficient matrix might be very sparse in many en-

gineering problems. The sparse matrix-vector product takes advantage of the matrix

sparsity by only calculating the non-zero elements products. The Code 6.3 shows the

most basic implementation of the dot product in C++ language using the sparse xlf 2d

sparse data structure.

int m; //number of horizontal nodes

int n; //number of vertical nodes

int N = m*n; //total number of elements in main diagonal

int s, w, p, e, n; //integers for pointer arithmetic

//initialization of the sparse matrix object for an ’m*n’ grid

sparse_xlf_2d *a;

a = new sparse_xlf_2d(m,n);

/* vectors are oversized by 2*m in order generalize the

algorithm. if not, some elements may not exist the (

e.g south (0-m) or west (0-1) elements)

the total domain of the vector is (0 to N+2*m)

the real domain of the vector is (m to m+N)

*/

vector<double> x(m*n+2*m, 1.0);

vector<double> y(m*n+2*m);

for (int i=0; i<N; ++i) {

s = m+i-m;

w = m+i-1;

110

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

p = m+i;

e = m+i+1;

n = m+i+m;

y[p] = a->as[i]*x[s] + a->aw[i]*x[w] + a->ap[i]*x[p] + a->ae[i]*x[e] +

a->an[i]*x[n];

}

Code 6.3: Algorithm SMVP (Simple).

6.3 Operator’s Computational Cost

In this section is analyzed the computational cost of the different operators. In order to

further evaluate the performance of the code, it is necessary to find how many opera-

tions and data transfers are needed for running each operator.

In some algebraic operators there is data reuse (i.e some components of the vector or

entries of the matrix that are used for more than one floating point operation e.g. in

a dense matrix-vector product, each component of the vector is multiplied nrow times).

In the sparse matrix-vector product defined in Section 6.2.3 each vector component is

multiplied five times, corresponding to the central, east, west, north and south couplings

that involve each unknown (with some differences at the boundaries). In computational

science, this situation is known as spatial locality and to take advantage of it the data

being reused is kept, if possible, on the cache memory to minimize data transfer costs.

This is known as cache reuse.

The cache memory is managed by the processor and the achievement of the maximum

cache reuse will depend on the size of the problem and on the size of the cache memory,

as well as on the data structures used to implement the algorithm. For instance, in the

smvp kernel defined in Section 6.2.3, every component of the vector is used during

111

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

three consecutive iterations as east, central and west unknown respectively as shown

in Figure 6.3. In this case, it is easily kept on the cache by the processor. However, the

same component may have been used nrow iterations before and after, to account for

the south and north couplings. In this cases, for large enough values of nrow the reuse

is not possible since the cache memory is filled with data required on the intermediate

iterations. Thus, the theoretical necessary data in order to operate the smvp is 7N: 5N

for the five diagonals plus 1N for the input vector plus 1N for the output vector. This

value could be incremented up to 11N in the absence of cache reuse.

Figure 6.3: Cache reuse in sparse matrix-vector product.

The values for different parameters relative to the computational cost of the operators

are listed in Table 6.1. All parameters in this table are representative of the operator’s

mathematical definition and do not depend on the implementation.

DOTP AXPY SMVP

FLOP 2N 2N 9N
Bytes 8 · 2N 8 · 3N 8 · 7N
Arithmetic Intensity 0.125 0.083 0.161
TBPRAM 3.200 2.125 4.122

Table 6.1: Computational cost of the operators.

112

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

6.4 Developement and Performance Evaluation

In this part of the chapter, the evaluation of performance is carried out using a bench-

mark specially designed for this task. Some aspects are considered during the evalua-

tion process.

• It is not possible to get a 100% efficiency. There are always some loses while

performing operations: latencies, pointer arithmetic or interferences with system

background.

• Many cores are needed in order to saturate the bandwidth in a multi-core proces-

sor.

• Two timings of the same function in the same conditions can be slightly different

due to random computer behaviors or other interferences. For this reason, the

operators are run 1,000 times and the results are the average.

• For big enough problem sizes, the smvp implementation of this project is able

to reuse only 2N elements of the vector instead of 4N. Because of this fact, the

obtained REP is not able to be similar to the TBPRAM.

The tasks carried out by the benchmark are:

1. Creating the necessary matrix and vector objects for a N vector size.

2. Initializing the objects with a previously known set of numbers. The reason not

to use random elements for the objects is no other than knowing the result of the

operators and thus being able to detect possible application’s errors.

3. Running the operators 1,000 times saving the elapsed time for each execution.

4. Calculating the average time and also the average amount of operations per sec-

ond, measured in GFLOPS.

113

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

5. If desired, incrementing the N value and start over all the process.

6. Printing all the results into a .dat file.

7. Executing a gnuplot script to create the graphics of the results.

The specifications of the system where the Stage 01 and Stage 02 of the benchmark is

run are detailed in Section 5.1 and Section 5.2.

The Stage 03 of the benchmark aims to evaluate the performance for distributed mem-

ory systems. For this reason, it has been run in the MareNostrum III supercomputer.

Although MareNostrum III has a total of 48,896 Intel SandyBridge-EP E5-2670 cores

at 2.600 GHz and 51.200 GB/s of main-memory bandwidth (3,056 compute nodes with

two processors per node), only from 1 to 8 nodes (16 to 128 cores) are used in Stage

03 for scalability evaluations due to queue limitations. See [26] for further information

about MareNostrum III.

6.4.1 Stage 01: Sequential Optimization

The objective of this section is to optimize the sequential operators in order to use them

later in the multi-threading implementation. If there is a set of optimized sequential

operators available, the parallelization task becomes very simple: every thread within

the parallel region must only run the optimized sequential operators.

Sequential optimization aims to make the code perform as fast as possible using a

single core. For this purpose, many different implementations of the three basic opera-

tors are included in the library and evaluated by the benchmark. The Table 6.2 shows,

for each implementation, its optimizing features as well as its specific IPC, TMP, AI

and TBPRAM (see Section 5.3 for further information about those terms); Recall that

the last column refers to the theoretical bounded performance for large problem sizes

114

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

which need to be stored in the main memory (RAM). The corresponding sequential op-

erators of the CBLAS library are evaluated in order to compare its results to the XLF

performance. However, since the sparse matrix-vector product is highly dependent on

the sparse data structure used and the xlf 2d sparse is specifically customized for this

project, it has not been compared with any reference.

Version Features IPC TMP AI TBPRAM

DOTP
DOTP-01-A FMA 2/5 1.600 0.125 3.200
DOTP-01-B FMA + Unrolling 10/5 8.000 0.125 3.200
DOTP-01-C SSE2 2/5 1.600 0.125 3.200
DOTP-01-D SSE2 + Unrolling 10/5 8.000 0.125 3.200

AXPY
AXPY-01-A FMA 10/5 8.000 0.083 2.125
AXPY-01-B FMA + Unrolling 10/5 8.000 0.083 2.125
AXPY-01-C SSE2 10/5 8.000 0.083 2.125
AXPY-01-D SSE2 + Unrolling 10/5 8.000 0.083 2.125

SMVP
SMVP-01-A FMA 10/5 8.000 0.161 4.122
SMVP-01-B FMA + Unrolling 10/5 8.000 0.161 4.122

Table 6.2: Stage 01. Theoretical parameters of the operators.

The results within gray colored cells represent the application’s theoretical limit in perfor-

mance for large data sizes. Notice that SSE2 instructions are not used in the smvp im-

plementations because of the way how SIMD registers organize the data which makes

it not possible to manage for the cache reuse. Hence, the data efficiency would be re-

duced in order to increase the IPC. As exposed in the previous chapter’s conclusions, it

is more important to minimize data movement rather than increase IPC.

Results of DOTP

The results obtained from the benchmark by running the sequential dotp operators are

listed in the Table 6.3 and plotted in Figure 6.4. The second column of the table refers to

the maximum real performance (REP) obtained for each operator and the third column

115

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

refers to the average performance obtained when the data is larger than 32MB, that is

when it is supposed to be main-memory bounded (RAM bounded). Recall that most

of the applications in computational science are main-memory bounded. Hence, the

results of interest for this project are these obtained from large data sizes (32MB are

considered large enough for the i5 4670k since its cache size is 6MB).

Version REPMAX REPRAM REPRAM/TBPRAM

CBLAS 2.900 1.950 0.609
DOTP-01-A 1.680 1.520 0.475
DOTP-01-B 5.577 2.300 0.719
DOTP-01-C 6.972 2.354 0.736
DOTP-01-D 10.290 2.381 0.744

Table 6.3: Stage 01. Results of the dot product.

Figure 6.4: Stage 01. Results of the dot product.

From the theoretical values in Table 6.2, both DOTP-01-A and DOTP-01-C should be

computing bounded due to its low IPC value. However, it can be observed from the

116

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

results that only the implementation DOTP-01-A is actually bounded by the TMP. The

REPRAM obtained from the implementation DOTP-01-C is greater than its specific TMP

but still lower than its TBPRAM. This is because when applying SSE2 instructions the IPC

can be easily optimized by the compiler or the processor as deduced in Section 5.3.5.

Also the DOTP-01-D presents an unexpected behavior since its REPMAX is greater than

its TMP. Nevertheless, the results of interest are those obtained for large data sizes and,

under these conditions the best implementation is the DOTP-01-D.

The DOTP-01-D implementation designed for this project is performing greater than

the corresponding operator within CBLAS library. However, it is not able to saturate

the main-memory bandwidth since many cores are needed in order to saturate the

bandwidth in a multi-core processor.

Results of AXPY

The results obtained from the benchmark by running the sequential axpy operators are

listed in the Table 6.4 and plotted in Figure 6.5. The second column of the table refers to

the maximum real performance (REP) obtained for each operator and the third column

refers to the average performance obtained when the data is larger than 32MB, that is

when it is supposed to be main-memory bounded (RAM bounded). Recall that most

of the applications in computational science are main-memory bounded. Hence, the

results of interest for this project are these obtained from large data sizes (32MB are

considered large enough for the i5 4670k since its cache size is 6MB).

Version REPMAX REPRAM REPRAM/TBPRAM

CBLAS 4.295 1.644 0.774
AXPY-01-A 10.559 1.793 0.844
AXPY-01-B 10.559 1.805 0.850
AXPY-01-C 8.590 1.759 0.828
AXPY-01-D 9.843 1.786 0.841

Table 6.4: Stage 01. Results of the generalized vector addition.

117

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.5: Stage 01. Results of the generalized vector addition.

From the results it can be observed that the REPMAX is greater than the theoretical

values of the TMP in Table 6.2 for all the implementations. As deduced previously, some

automatic optimizations might have been done to the IPC. Nevertheless, the results of

interest are those obtained for large data sizes and under these conditions the best

implementation is the AXPY-01-B. In addition, the ratio REPRAM/TBPRAM obtained from

the axpy results are better than those obtained with the dotp. In other words, the AXPY-

01-B is closer to the TBP than the DOTP-01-D.

118

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Results of SMVP

The results obtained from the benchmark by running the sequential smvp operators are

listed in the Table 6.5 and plotted in Figure 6.6. The second column of the table refers to

the maximum real performance (REP) obtained for each operator and the third column

refers to the average performance obtained when the data is larger than 32MB, that is

when it is supposed to be main-memory bounded (RAM bounded). Recall that most

of the applications in computational science are main-memory bounded. Hence, the

results of interest for this project are these obtained from large data sizes (32MB are

considered large enough for the i5 4670k since its cache size is 6MB).

Version REPMAX REPRAM REPRAM/TBPRAM

SMVP-01-A 3.456 2.286 0.555
SMVP-01-B 3.524 2.207 0.535

Table 6.5: Stage 01. Results of the sparse matrix-vector product.

From results it can be observed that the ratio the ratio REPRAM/TBPRAM of the smvp is

the lowest among the evaluated operators. In other words, the smvp is the least efficient

of the operators. This is because both implementations of the smvp are not able to take

full advantage of the cache reuse. Hence, the entries of the vector are read three times

instead of one (this behavior is predicted in Section 6.3).

119

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.6: Stage 01. Results of the sparse matrix-vector product.

Conclusions

The conclusions obtained from the first stage evaluation are:

• It is not possible to saturate the main-memory bandwidth using a single core of a

multi-core processor.

• The sequential operators implemented in the XLF are performing very good. All

the optimized implementations of the dotp and axpy operators yield a better result

than their corresponding reference found in CBLAS.

• It may be difficult to implement the algorithms in a computational application and

take full advantage of the cache reuse (e.g. the sparse matrix-vector relative

120

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

performance is the worst among all the operators when it is memory bounded

because it had to read three times the entries of the vector instead of one).

• It is necessary to optimize the IPC of the applications in order to be main-memory

bounded instead of computing bounded for large problem sizes (i.e. the DOTP-

01-A is computing bounded by its TMP instead of its TBP).

• The SIMD extensions are a great optimization for applications that fits within the

cache memory. However, for main-memory bounded applications, using SIMD

results in a limited improvement (e.g. the dotp performed about 3% better when

using SIMD) or even in a performance reduction (e.g. the axpy performed about

1% worse when using SIMD).

• It has not been found any pattern that relates the improvement in performance

to the optimization applied (e.g. the dotp improved with all the optimizations, the

axpy only improved with the loop unrolling and finally the smvp did not improve

even with loop unrolling). Thus, the behavior of performance versus type of opti-

mization also depends on the algorithm itself.

6.4.2 Stage 02: Shared Memory Parallelization

The objective of this section is to develop a set of algebraic kernels able to take full ad-

vantage of the main-memory bandwidth. Although the number of cores is multiplied by

4 in this case, the objective is to saturate the memory bandwidth and get a performance

close to the TBPRAM, that is improving by about 20% the performance obtained from

the operators in Stage 01 instead of multiplying it by 4. Once the effectiveness of this

operators is validated, a distributed parallel code can be designed by running locally in

every node the parallel operators designed in this section.

Parallelization for shared memory systems aims to make the application to use all the

cores available in the same node in an efficient way, that is sharing the work and also

the data stored within the main memory in order to avoid unnecessary data movement.

121

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

For this purpose, different options have been implemented for each operator using the

OpenMP standards (see Section 2.2 for instance). The Table 6.6 shows, for each im-

plementation, its optimizing features as well as its specific IPC, TMP, AI and TBPRAM

(see Section 5.3 for further information about those terms); Recall that the last column

refers to the theoretical bounded performance for large problem sizes which need to be

stored in the main memory (RAM).

Two different implementations of the dotp and the axpy are parallelized in this section

because from the results in the previous section the advantage in performance is not

clear enough. In addition, the operators have been parallelized in both manual and

automatic ways with the objective of analyzing if there is an overhead related to the

automatic load balancing.

Version Features IPC TMP AI TBPRAM

DOTP
DOTP-02-A OMP Manual + DOTP-01-A 8/5 6.400 0.125 3.200
DOTP-02-B OMP Automatic + DOTP-01-A 8/5 32.000 0.125 3.200
DOTP-02-C OMP Manual + DOTP-01-D 40/5 6.400 0.125 3.200
DOTP-02-D OMP Automatic + DOTP-01-D 40/5 32.000 0.125 3.200

AXPY
AXPY-02-A OMP Manual + AXPY-01-A 40/5 32.000 0.083 2.125
AXPY-02-B OMP Automatic + AXPY-01-A 40/5 32.000 0.083 2.125
AXPY-02-C OMP Manual + AXPY-01-B 40/5 32.000 0.083 2.125
AXPY-02-D OMP Automatic + AXPY-01-B 40/5 32.000 0.083 2.125

SMVP
SMVP-02-A OMP Manual + SMVP-01-A 40/5 32.000 0.161 4.122
SMVP-02-B OMP Automatic + SMVP-01-A 40/5 32.000 0.161 4.122

Table 6.6: Stage 02. Theoretical parameters of the operators.

The results within gray colored cells represent the application’s theoretical limit in perfor-

mance for large data sizes. Notice that this time all the implementations are supposed

to be memory bounded.

122

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Results of DOTP

The results obtained from the benchmark by running the parallelized dotp operators are

listed in the Table 6.7 and plotted in Figure 6.7. The second column of the table refers to

the maximum real performance (REP) obtained for each operator and the third column

refers to the average performance obtained when the data is larger than 32MB, that is

when it is supposed to be main-memory bounded (RAM bounded). Recall that most

of the applications in computational science are main-memory bounded. Hence, the

results of interest for this project are these obtained from large data sizes (32MB are

considered large enough for the i5 4670k since its cache size is 6MB).

Version REPMAX REPRAM REPRAM/TBPRAM

DOTP-01-D 10.290 2.381 0.744
DOTP-02-A 6.443 2.959 0.925
DOTP-02-B 30.065 3.054 0.954
DOTP-02-C 6.924 2.956 0.924
DOTP-02-D 30.315 3.050 0.953

Table 6.7: Stage 02. Results of the dot product.

The results for the dotp in the second stage’s evaluation are consistent with the values in

Table 6.6. The best bounded performance for large problem sizes has been obtained by

the automatic and optimized implementation, the DOTP-02-B. However, the difference

between the DOTP-02-B and the DOTP-02-D is very small. In addition, the maximum

REP has been achieved by the DOTP-02-D implementation. Nevertheless, since only

the bounded performance is important, the DOTP-02-B is considered the best option.

123

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.7: Stage 02. Results of the dot product.

Results of AXPY

The results obtained from the benchmark by running the parallelized axpy operators

are listed in the Table 6.8 and plotted in Figure 6.8. The second column of the table

refers to the maximum real performance (REP) obtained for each operator and the third

column refers to the average performance obtained when the data is larger than 32MB,

that is when it is supposed to be main-memory bounded (RAM bounded). Recall that

most of the applications in computational science are main-memory bounded. Hence,

the results of interest for this project are these obtained from large data sizes (32MB

are considered large enough for the i5 4670k since its cache size is 6MB).

The results for the axpy in the second stage’s evaluation are consistent with the values

124

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Version REPMAX REPRAM REPRAM/TBPRAM

AXPY-01-B 10.559 1.805 0.850
AXPY-02-A 34.360 2.008 0.945
AXPY-02-B 32.451 2.019 0.950
AXPY-02-C 34.360 2.021 0.951
AXPY-02-D 34.360 2.001 0.942

Table 6.8: Stage 02. Results of the generalized vector addition.

Figure 6.8: Stage 02. Results of the generalized vector addition.

in Table 6.6. In contrast to the parallel dot product, the maximum performance for large

problem sizes has been obtained by the manual and simple implementation, the AXPY-

02-C. However, the difference between the AXPY-02-C and the other versions is very

small.

125

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Results of SMVP

The results obtained from the benchmark by running the parallelized smvp operators

are listed in the Table 6.9 and plotted in Figure 6.9. The second column of the table

refers to the maximum real performance (REP) obtained for each operator and the third

column refers to the average performance obtained when the data is larger than 32MB,

that is when it is supposed to be main-memory bounded (RAM bounded). Recall that

most of the applications in computational science are main-memory bounded. Hence,

the results of interest for this project are these obtained from large data sizes (32MB

are considered large enough for the i5 4670k since its cache size is 6MB).

Version REPMAX REPRAM REPRAM/TBPRAM

SMVP-01-A 3.456 2.286 0.555
SMVP-02-A 1.471 1.213 0.294
SMVP-02-B 11.514 3.216 0.780

Table 6.9: Stage 02. Results of the sparse matrix-vector product.

The results for the smvp in the second stage’s evaluation are totally clear: the maximum

performance is obtained with the manual implementation. In addition, the REPRAM ob-

tained with the SMVP-02-B is greater than 3.200 GFLOPS, which would be the TBPRAM

if considering only the 2N value of cache reuse related to the east and west couplings.

Thus this result implies that a small cache reuse related to the north and south couplings

is still possible for large problem sizes.

126

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.9: Stage 02. Results of the sparse matrix-vector product.

Conclusions

The conclusions obtained from the second stage evaluation are:

• In a main-memory bounded application, the objective of multi-threading is to satu-

rate its memory bandwidth instead of multiplying the performance by the number

of cores used. This is due to the bottleneck.

• Both dotp and axpy exceeded the 95% of the bandwidth. Since the pointer arith-

metic has not been taken into account when calculating the number of FLOP,

neither the interferences with the system’s background nor the multi-threading

management, the 95% can be considered a great result. Thus, the main-memory

bandwidth can be considered saturated.

127

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

• The sparse matrix-vector product is still limited by the small cache reuse which is

about 2N instead of 4N.

• Any pattern that relates the improvement in performance with the parallelization

applied has been found (i.e. the dotp improved slightly with the automatic mode,

the axpy improved slightly with the manual mode and finally the smvp sharply

decreased with the automatic mode). Thus the behavior of performance versus

multi-threading options also depends on the algorithm itself. Nevertheless, the

differences in performance due to different OMP options are small.

6.4.3 Stage 03: Distributed Memory Parallelization

The objective of this section is to develop a set of algebraic kernels able to properly

scale in a supercomputer in order to solve efficiently large problems or operations. The

complexity of the communications increases with the number of nodes. Hence, the per-

formance of the operators may be reduced due to the cost of the MPI communications.

Parallelization for distributed memory systems aims to make the application to distribute

the work load among many nodes in an efficient way that is minimizing the communica-

tions and data transfers between nodes. For this purpose, one MPI version has been

implemented for both dotp and smvp (see Section 2.3 for instance) to execute concur-

rently multiple instances of the optimal implementations of the operators from Stage 02.

Notice that each MPI process will run a OpenMP application. Hence, the parallelization

model is hybrid of MPI + OpenMP.

The Table 6.10 shows, for each operator, its theoretical main-memory bounded perfor-

mance depending on the number of nodes. Recall that each node in MareNostrum III

has two Intel Xeon E5-2670, then the total main-memory bandwidth per node is 102.400

GB/s. This way the available bandwidth increases with the number of nodes.

128

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

DOTP-03 SMVP-03
Number of Nodes TBPRAM TBPRAM

1 12.800 16.486
2 25.600 36.972
3 38.400 49.458
4 51.200 65.944
5 64.000 82.430
6 76.800 98.916
7 89.600 115.402
8 102.400 131.888

Table 6.10: Stage 03. Theoretical parameters of the operators.

The MPI version of the axpy operator does not require communications because all

operations are totally independent from the rest. For this reason, even though the hybrid

version of the generalized vector addition has been implemented in the XLF, it has not

beeen tested in this stage.

Results of DOTP

The results obtained from the benchmark by running the hybrid dotp operator are listed

in the Table 6.11 and plotted in Figure 6.10. The third column refers to the average

performance obtained when the data is larger than 120MB per node, that is when it

is supposed to be main-memory bounded (RAM bounded). Recall that most of the

applications in computational science are main-memory bounded. Hence, the results of

interest for this project are these obtained from large data sizes (120MB are considered

large enough for the nodes of MareNostrum III since its total cache is 40MB).

The results for the dotp in the third stage’s evaluation are consistent with the values in

Table 6.10. The performance starts from about 90% and decreases in about 20% as

the number of nodes increases. This behavior is predicted and is due to the cost of the

communications, which are more complex when the number of nodes is increased.

129

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Number of Nodes REPRAM REPRAM/TBPRAM

1 11.246 0.876
2 21.792 0.851
3 31.737 0.827
4 43.159 0.843
5 45.518 0.711
6 58.447 0.761
7 68.877 0.769
8 81.653 0.797

Table 6.11: Stage 03. Results of the dot product.

Figure 6.10: Stage 03. Results of the dot product.

Results of SMVP

The results obtained from the benchmark by running the hybrid smvp operator are listed

in the Table 6.12 and plotted in Figure 6.11. The third column refers to the average

130

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

performance obtained when the data is larger than 120MB per node, that is when it

is supposed to be main-memory bounded (RAM bounded). Recall that most of the

applications in computational science are main-memory bounded. Hence, the results of

interest for this project are these obtained from large data sizes (120MB are considered

large enough for the nodes of MareNostrum III since its total cache is 40MB).

Number of Nodes REPRAM REPRAM/TBPRAM

1 11.321 0.687
2 22.373 0.605
3 32.253 0.652
4 41.460 0.629
5 47.330 0.574
6 55.052 0.557
7 72.939 0.632
8 83.559 0.634

Table 6.12: Stage 03. Results of the sparse matrix-vector product.

Figure 6.11: Stage 03. Results of the sparse matrix-vector product.

131

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

The results for the smvp in the third stage’s evaluation are consistent with the values in

Table 6.10. This time, the performance starts from about 70% and decreases in about

10% as the number of nodes increases.

Study of the Scalability

In computational science, scalability is the capability of a system to increase its total

throughput under an increased load when resources (typically hardware) are added.

Since the performance of the operators in Stage 03 is evaluated by incrementing the

number of cores or nodes used for running the operators, the throughput is expected to

increase in the same way. However, the MPI communications involve a computational

cost which is going to be evaluated below.

There are two common methods to evaluate the performance of a distributed applica-

tion. In one hand, strong scaling studies the speed-up versus the number of nodes for

a constant work-load. The ideal result should be a straight line such as y = x. On the

other hand, weak scaling studies the performance versus the number of nodes while

increasing the work-load the same as the computing power. The ideal result should be

a constant straight line such as y = C.

The Figure 6.12 represents the strong scaling study, and the Figure 6.13 represents the

weak scaling study.

132

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Figure 6.12: Stage 03. Study of the Strong Scaling behavior.

Figure 6.13: Stage 03. Study of the Weak Scaling behavior.

133

CHAPTER 6. XLF, THE LINEAR ALGEBRA LIBRARY

Conclusions

The conclusions obtained from the third stage evaluation are:

• The hybrid operators implemented in the XLF scale correctly when running in up

to 8 nodes (that is 128 cores).

• The XLF library can be used to solve CFD problems efficiently in large computer

clusters.

• The hybrid parallel concept is very useful in order to take full advantage of every

shared-memory systems within a distributed-memory system. In addition, it is

very confortable to implement a hybrid code.

• The MPI communications present an overhead that makes the performance of the

operators to decrease as the number of nodes or cores increase.

134

Chapter 7

Environmental Impact Analysis

In order to identify and, if possible, minimize all the negative effects that the project

may cause to the environment, it is necessary to carry out an environmental impact

analysis. This analysis takes into account all project phases, from the preliminary study

to decommissioning in order to be as environmentally friendly as possible.

Recall that the objective of this project is to develop an efficient parallel tool in order

to reduce the power consumption of many computational applications. For this reason,

the project is already environmentally friendly.

7.1 Preliminary Study and Draft Project

As this section deals with the documentation and study prior to code development,

the environmental impact associated with the design phase has been minimal. Only

the office supplies that may have been used as well as the energy consumption of the

different electronic devices required for the drafting phase such as lighting or computers

is considered.

135

CHAPTER 7. ENVIRONMENTAL IMPACT ANALYSIS

During this phase HVAC systems have been used responsibly by setting a maximum of

20°Cin winter and a minimum of 27°Cin summer. The use of lighting has been neces-

sary but always using low-energy fluorescent. Most of the information and books have

been consulted via Internet in order to minimize the use of paper. A laptop with low

power requirements has been used for gathering, organizing and reading information.

Recycled paper has been used for printing documents when it has been required. Fi-

nally, the only office supplies which have been consumed are recycled paper and two

pens.

7.2 Memory Writing

This section deals with the environmental impact related to write the memory and cre-

ating all the documentation required. This way, the impact associated with this phase is

the same as in Section 7.1 since it has been carried out in the same working environ-

ment.

7.3 Construction Phase

This section deals with the environmental impact related to the construction stage. This

project does not require any material construction because only a computational appli-

cation has been developed. Although the code has been developed in the same working

environment and thus the environmental impact is the mostly the same as considered

in Section 7.1, two additional computers with different architectures have been required

during this task. In order to minimize the energy consumption, only one computer has

been used at the same time thus the other two have been off.

136

CHAPTER 7. ENVIRONMENTAL IMPACT ANALYSIS

7.4 Operational Phase

As this section deals with the execution of the computational applications, only the en-

vironmental impact associated with the power consumption of the computers is consid-

ered since the execution requires no supervision. Furthermore, the object of this project

is to implement an efficient code hence the environmental impact associated with this

phase is minimized.

7.5 Decommissioning

As this project is about developing a computational application, all the elements are

computer files hence to eliminate the project only requires to delete the computer files.

137

Chapter 8

Budget Summary

In this section the cost estimate of the project is attached. It takes into account the costs

of hardware, research and development and the energy consumption. Consult the Cost

Estimate document attached to the project for further information of each item.

8.1 Cost Estimate

The total cost estimate is attached in Table 8.1. All the items are detailed in the sections

above.

Item Cost [€]

Hardware 718.80
Research and development 24,408.00
Power consumption 219.05

Cost Estimate (before IVA) 25,345.85
IVA (21%) 5,322.63
Cost Estimate 30,668.48

Table 8.1: Cost Estimate.

138

CHAPTER 8. BUDGET SUMMARY

Thirty thousand six hundred sixty-eight euro and forty-eight cent.

139

Chapter 9

Project Planning

The present project was developed between the 1st of June of 2015 and the 10th of

June of 2016. Many tasks have been carried out during this period. This chapter aims

to give the reader an idea about how the tasks have been planned and organized.

9.1 List of Tasks

In the table attached in Figure 9.1 all the tasks realized during the development of the

project are listed. Below is a short summary of each task.

1. Start Project.

2. Learning Ubuntu: Ubuntu is a Debian-based Linux operative system very useful

for programmers and developers.

3. Learning Gedit: Gedit is the default text editor of the GNOME desktop environ-

ment. Designed as a general-purpose text editor, gedit emphasizes simplicity and

140

CHAPTER 9. PROJECT PLANNING

Figure 9.1: List of Tasks.

ease of use. It includes tools for editing source code and structured text such as

markup languages.

4. Learning Gnuplot: Gnuplot is a portable command-line driven graphing utility

available in Ubuntu and many other platforms. The source code is copyrighted but

freely distributed (i.e., you don’t have to pay for it). It was originally created to allow

scientists and students to visualize mathematical functions and data interactively.

5. Learning ParaView: ParaView is an open-source, multi-platform data analysis

and visualization application. ParaView users can quickly build visualizations to

analyze their data using qualitative and quantitative techniques.

6. Conduction Exercises: During this task a set of five conduction exercises (from

141

CHAPTER 9. PROJECT PLANNING

one-dimensional steady problems to two-dimensional transient problems) was re-

alized.

7. CFD Exercises: During this task a set of four CFD exercises (from one-dimension

steady problems to two-dimensional transient problems) was realized.

8. CFD Case: Driven Cavity: During this task the Driven Cavity exercise (two-

dimensional transient laminar problem) was solved. The results were compared

to the available bibliography and also an animation was produced with ParaView.

9. Studying about OOP: Object-oriented programming is a programming paradigm

based on the concept of ”objects”, which may contain data, in the form of fields,

often known as attributes; and code, in the form of procedures, often known as

methods.

10. Re-Programming all exercises with OOP: During this task all the problems that

were solved previously were re-programmed in order to practice the OOP con-

cept.

11. Studying about Headers and Makefiles: In order to create big computational

applications, the code may be split up into a set of files. This also increases the

complexity of compiling the code. The makefiles allows the user to automatically

compile and link a big set of files.

12. Creation of the XCFD library: A library was designed for solving CFD problems

in a generic way during this task. The library included many objects and utilities

for solving two-dimensional CFD laminar problems.

13. CFD Case: Driven Cavity using XCFD: During this task the Driven Cavity was

re-programmed using the functions, tools and utilities included in the XCFD.

14. CFD Case: Differentially Heated Cavity using XCFD: During this task the Dif-

ferentially Heated Cavity (two-dimensional CFD laminar problem with natural con-

vection) was solved using the functions, tools and utilities included in the XCFD.

15. Studying Bash Scripting: Bash is a command processor that typically runs in a

text window, where the user types commands that cause actions. Bash can also

142

CHAPTER 9. PROJECT PLANNING

read commands from a file, called a script. It is very useful to automate repetitive

actions such as running a program with different inputs for getting different results.

16. Studying Pointers and Inheritance: During this task the programming skills

were improved in order to be ready to face new problems.

17. Building a Homemade Cluster: During this task the concepts related to net-

works and cluster building were studied. In addition, a small cluster was built with

a total of 4 nodes.

18. Studying Parallel Computing (MPI): MPI is a parallel interface useful for paral-

lelizing codes that are going to be run within a distributed memory system such

as a cluster or a supercomputer.

19. CFD Case: Solving Burger’s Equation with own Cluster: The Burger’s Equa-

tion is a typical CFD problem for starting to study the turbulent flow. This problem

was parallelized using MPI and executed within the homemade cluster.

20. Studying CFD Operator-Based Formulation: The governing equations in CFD

can be discretized in an operator-based formulation. This way most of the CFD

problems are reduced to three basic algebraic operations (dotp, axpy and smvp)

which are the object of this project.

21. Learning LaTeX: LaTeX is a high-quality typesetting system; it includes features

designed for the production of technical and scientific documentation. LaTeX is

the de facto standard for the communication and publication of scientific docu-

ments.

22. Writing Memory: This task is about writing the project’s memory.

23. Studying about the CPU and the Memory: In order to evaluate the performance

of the algebraic kernel implemented in this project, it is necessary to previously

learn how hardware works and what are the bottlenecks.

24. Creation of a Benchmark for evaluating CPU and Memory: In order to learn

deeper the CPU and Memory behavior, this task is carried out. A system bench-

143

CHAPTER 9. PROJECT PLANNING

mark was developed in order to experimentally understand the behavior of the

CPU and the Memory.

25. Creation of the XLF library: During this task the file-system of the XLF was

designed.

26. Implementing Sparse Matrix structures to XLF: This task involves both imple-

menting and evaluating the sparse matrix data structures as well as tools and

utilities like printing, transposing and many others.

27. Implementing Vector tools to XLF: This task involves both implementing and

evaluating vector tools and utilities such as functions for calculating the norm of a

vector, the absolute and relative error of two vectors and many others.

28. Implementing Sequential Algebraic Operators to XLF: This task involves im-

plementing the algebraic kernels and also check whether the function operate

correctly. Many different implementations of each operator were included in order

to compare the effectiveness of different optimizations.

29. Creation of a Benchmark for evaluating the XLF: During this task a benchmark

was designed for evaluating the performance of the XLF methods. The bench-

mark creates and initializes the input data necessary for running the algebraic

kernels. In addition, many tools and utilities for calculating time and performance

were developed.

30. Evaluating the XLF Sequential Operators: During this task the all the imple-

mentations of the sequential operators were evaluated. This task also involves

the post-processing of the data with gnuplot scripts.

31. Studying Parallel Computing (OpenMP): Before parallelizing the operators for

shared memory system, it was necessary to study the basics of OpenMP.

32. Implementing OMP Parallel Operators to XLF: Many different implementations

were included in order to compare the effectiveness of different OpenMP options.

144

CHAPTER 9. PROJECT PLANNING

33. Evaluating the XLF OMP Operators: During this task all the implementations

of the OMP parallel operators were evaluated. This task also involves the post-

processing of the data with gnuplot scripts.

34. Implementing Hybrid Parallel Operators to XLF: The OMP parallel operators

are optimized for running in an entire node. For this reason, only one MPI version

is implemented for each operator. The MPI only has to distribute the work-load

among the available MPI processes, then the OMP operators are executed.

35. Evaluating the XLF MPI Operators: During this task the scalability of the Hybrid

parallel operators was evaluated. This task also involves the post-processing of

the data with gnuplot scripts.

9.2 Gantt Chart

A Gantt chart is a type of bar chart, adapted by Karol Adamiecki in 1896 and indepen-

dently by Henry Gantt in the 1910s, that illustrates a project schedule. Gantt charts

illustrate the start and finish dates of the terminal elements and summary elements of a

project.

The Gantt chart of the tasks listed above is attached in Figure 9.2.

145

CHAPTER 9. PROJECT PLANNING

Figure 9.2: Gantt Chart.

146

Chapter 10

Conclusions

In this chapter, the conclusions after the accomplishment of the present project are

written.

10.1 General Conclusions

The object of this project is considered accomplished. A powerful efficient, parallel

computational application able to perform three algebraic operations has been devel-

oped and evaluated obtaining great results of performance and scalability. In addition,

the relation between CFD algorithms and algebraic operators has been mathematically

introduced.

The general conclusions about the results are:

• The numerical methods are very useful for solving the Navier-Stokes system of

equations since its analytical solution is only known for very simple cases such as

147

CHAPTER 10. CONCLUSIONS

one-dimensional steady flow.

• In order to solve the Navier-Stokes equations using a numerical method, comput-

ers are needed.

• Although the hardware industry is in constant development and the computing

elements are becoming more efficient (i.e. the ratio of power consumption to op-

erations per second is increasing), the total power consumption of clusters and

supercomputer is very high. For this reason it is a must to develop efficient com-

putational tools in order to minimize the energy consumption.

• It is very important to also develop computational tools able to evaluate the per-

formance of another computational application and compare the throughput with

the bottlenecks (e.g. the benchmark developed in this project is able to do it).

• To design an efficient, portable algebra library is a good deal. In one hand, the

CFD code is easily written using the algebraic operators. On the other hand,

to improve or implement the CFD code in a specific computational architecture

becomes simple since only the operators need to be changed. In addition, the

algebra library is suitable not only for CFD codes but for every application that

may involve solving differential equations.

This project is intended to be an introduction to research and development. For this

reason, during the realization of the project, its author has deepened in many fields of

science and engineering:

• mathematical formulation,

• numerical methods,

• computational fluid dynamics,

• programming in C++,

• computational science,

148

CHAPTER 10. CONCLUSIONS

• Linux OS.

10.2 Future Work

The computing science is in constant development. For this reason, this project is

considered just the tip of a large iceberg. The tasks that are going to be carried out

from now are:

• Deepen in mathematical formulation, specifically in operator-based formulation.

• Study the features of the new computational architectures.

• Evaluate the limit in scalability for the actual XLF (i.e. the maximum number of

nodes for which the performance increases).

• Implement the operators in new architectures (e.g. GPU or Intel XeonPhi).

• Implement the operators using new programming paradigms (e.g. OpenCL or

CUDA).

• Deepen in mathematical formulation in order to be able to solve more generic CFD

cases (i.e. eliminate hypotheses such as Boussinesq assumption, incompressible

flow and so on).

• Generalize the data structures and algebraic operators in order to adapt the code

to different numerical methods (e.g. unstructured grids, three-dimensional prob-

lems or collocated meshes).

149

Appendices

150

Appendix A

Solved Cases

During the realization of this project, many CFD cases have been solved:

• One-dimension, steady state conduction problem.

• Two-dimension, steady state conduction problem.

• One-dimension, unsteady conduction problem.

• Two-dimension, unsteady conduction problem.

• One-dimension, steady state convection-diffusion problem.

• Two-dimension, steady state convection-diffusion problem.

• One-dimension, unsteady convection-diffusion problem.

• Smith-Hutton problem.

• Driven cavity problem.

• Differentially heated cavity problem.

• Burguers Equation.

151

APPENDIX A. SOLVED CASES

Below is a short summary of some of the most relevant cases that have been solved

during.

A.1 Smith-Hutton Case

The objective of this case is to obtain the steady state solution of the Smith-Hutton

problem, described in [27]. To do so, a two-dimensional convection-diffusion equation

must be solved numerically in a rectangular domain (see Figure A.1) with the prescribed

velocity field given by

u(x, y) = +2y(1 − x2) (A.1)

v(x, y) = −2y(1 − y2) (A.2)

Figure A.1: General schema of the Smith-Hutton problem.

The table of the results obtained from the Smith-Hutton is attached in the Figure A.2.

The results from the literature are also listed. Finally, the plots with the results for

different mesh sizes are shown in Figures A.3, A.4, and A.5.

152

APPENDIX A. SOLVED CASES

Figure A.2: Results for the Smith-Hutton problem.

153

APPENDIX A. SOLVED CASES

Figure A.3: Smith-Hutton. Plot for ρ/Γ = 10e1.

Figure A.4: Smith-Hutton. Plot for ρ/Γ = 10e3.

154

APPENDIX A. SOLVED CASES

Figure A.5: Smith-Hutton. Plot for ρ/Γ = 10e6.

155

APPENDIX A. SOLVED CASES

A.2 Driven Cavity Case

The objective of this case is to obtain the unsteady solution of the driven cavity problem,

described in [28]. To do so, the two-dimensional Navier-Stokes system of equations

must be solved numerically in a square domain (see Figure A.6).

Figure A.6: General schema of the driven cavity problem.

The results have been obtained for different Reynolds numbers: 100, 400, 1,000, 3,200,

7,500 and 10,000. The plots are attached in the Figures A.7, A.8, A.9, A.10, A.11 and

A.12. Notice that the green line is the result of reference, found in the literature. The

blue line is the result obtained using a 25x25 grid and a CDS numerical scheme. The

red line is the result obtained using a 40x40 grid and a QUICK numerical scheme.

In addition, one animation has been made for each Reynolds number using ParaView.

The Figure A.13 shows the motion of the fluid for an instant of time for Re = 10000.

156

APPENDIX A. SOLVED CASES

Figure A.7: Driven cavity. Plot for Re = 100.

Figure A.8: Driven cavity. Plot for Re = 400.

157

APPENDIX A. SOLVED CASES

Figure A.9: Driven cavity. Plot for Re = 1000.

Figure A.10: Driven cavity. Plot for Re = 3200.

158

APPENDIX A. SOLVED CASES

Figure A.11: Driven cavity. Plot for Re = 7500.

Figure A.12: Driven cavity. Plot for Re = 10000.

159

APPENDIX A. SOLVED CASES

Figure A.13: Driven cavity. Capture in ParaView for Re = 10000.

160

APPENDIX A. SOLVED CASES

A.3 Differentially Heated Cavity Case

The objective of this case is to obtain the steady state solution of the driven cavity

problem, described in [29]. To do so, the two-dimensional Navier-Stokes system of

equations must be solved numerically in a square domain (see Figure A.14). In this

case, the Boussinesq assumption must be considered in order to simulate the natural

convection in the fluid (buoyancy).

Figure A.14: General schema of the differentially heated cavity problem.

The results have been obtained for different Rayleigh numbers: 1,000, 10,000, 100,000,

and 1,000,000. The plots of average Nusselt number vs number of nodes and relative

error (compared to the article of reference) vs number of nodes are attached in the

Figure A.15. Notice that the calculations have been carried out using many different

numerical schemes.

161

APPENDIX A. SOLVED CASES

Figure A.15: Differentially heated cavity plots.

162

Bibliography

[1] G. E. Moore. Cramming More Components onto Integrated Circuits. Electronics,

pages 114–117, April 1965.

[2] The Scipy Community. Dictionary Of Keys based sparse matrix., May 2016.

[3] The Scipy Community. Compressed Sparse Row matrix., May 2016.

[4] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP. Massachusetts Institute

of Technology, 2008.

[5] OpenMP. About OpenMP, June 2012.

[6] A. Silberschatz, P. Baer Galvin, and G. Gaine. Operating System Concepts. New

Haven, 2013.

[7] OpenMP. OpenMP Application Programming Interface, November 2015.

[8] R. W. Green. OpenMP Loop Scheduling, September 2012.

[9] MPICH. Web pages for MPI and MPE.

[10] Mathematics and Computer Science Division. MPICH User’s Guide., 2015.

[11] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.

Version 3.1., 06 2015.

[12] W. Kendall. MPI Tutorial.

163

BIBLIOGRAPHY

[13] Bruce R. Munson. Fundamentals of Fluid Mechanics, 7th. John Wiley and Sons,

2013.

[14] E. R. G. Eckert and R. M. Drake Jr. Analysis of Heat and Mass Transfer. McGraw-

Hill, 1972.

[15] W. M. Rohsenow, J. P. Hartnett, and E. N. Ganic. Handbook of Heat and Mass

Transfer Fundamentals. McGraw-Hill, 1985.

[16] L. Virto. Mecànica de fluids. Fonaments I. Edicions UPC, 1993.

[17] F. M. White. Mecánica de fluidos, 6 ed. Mc Graw Hill, 2008.

[18] F. X. Trias, M. Soria, A. Oliva, and C. D. Pérez-Segarra. Direct numerical simula-

tions of two- and three-dimensional turbulent natural convection flows in a differ-

entially heated cavity of aspect ratio 4. Journal of Fluid Mechanics, 586:259–293,

2007.

[19] University of Kentucky. Lectures in Computational Fluid Dynamics, 2007.

[20] R. Courant, K. Friedrichs, and H. Lewy. Uber die differenzengleichungen der math-

ematischen physik. Mathematische Annalen, 100:32–74, 1928.

[21] A. J. Chorin. Numerical solution of the navier-stokes equations. Mathematics of

Computation, 22:745–762, 1968.

[22] F. X. Trias, O. Lehmkuhl, A. Oliva, C.D. Pérez-Segarra, and R.W.C.P. Verstappen.

Symmetry-preserving discretization of Navier-Stokes equations on collocated un-

structured meshes. Journal of Computational Physics, 258:246–267, 2014.

[23] Intel. Intel 64 and IA-32 Architectures Optimization Reference Manual, 01 2016.

[24] W. Petersen and P. Arbenz. Introduction to Parallel Computing. Oxford University

Press, 2004.

[25] A. Fog. The microarchitecture of Intel, AMD and VIA CPUs. An optimization guide

for assembly programmers and compiler makers. Technical University of Denmark,

January 2016.

164

BIBLIOGRAPHY

[26] Barcelona Supercomputing Center. MareNostrum III User’s Guide, 04 2016.

[27] R. M. Smith and A. G. Hutton. The numerical treatment of advection: a per-

formance comparison of current methods. Numerical Heat Transfer, 5:439–461,

1982.

[28] M. Kawaguti. Numerical solution of the navier-stokes equations for the flow in a

two-dimensional cavity. Journal of the Physical Society of Japan, 16:2307–2315,

1961.

[29] G. de Vahl Davis. Natural convection in a square cavity: a comparison exercise.

International Journal for Numerical Methods in Fluids, 3:227–248, 1983.

165

