
Implementation of a flux limiter into a fully-portable,
algebra-based framework for heterogeneous computing

Xavier Álvarez1 , Nicolás Valle1 , Andrey Gorobets2 , F. Xavier Trias1
In the tenth International Conference on Computational Fluid Dynamics (ICCFD10)
9–13 June 2018, Barcelona

1Heat and Mass Transfer Technological Center, Technical University of Catalonia (UPC)
2Keldysh Institute of Applied Mathematics, Russian Academy of Science (RAS)

Motivation

The CTTC research group

The Heat and Mass Transfer Technological Center (CTTC) has been working on CFD for
more than 20 years:

• Fundamental research on fluid dynamics and heat and mass transfer phenomena.
• Applied research on thermal and fluid dynamic optimization of thermal system
and equipment.

1/23

CTTC’s historical background in HPC

2/23

Divergence of HPC systems

The progress in hardware architectures is leading to an increasing hybridisation of high-

performance computing (HPC) systems, making the design of computing applications a rather

complex problem, and is affecting most of the fields that rely on large-scale simulations.

3/23

Divergence of HPC systems

3/23

Fully-portable implementation models

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint in the context
of the exascale challenge.

¿Do the traditional implementation models facilitate code portability?

• In our opinion, no. The legacy soǕtware was not designed for providing portability simply
because it was not necessary. Hence, they involve a large number of functions and data struc-
tures that only fit properly into the CPU-only approach.

¿Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. Making an effort to design modular applications composed of a reduced
number of independent and well-defined code blocks helps to reduce the generation of er-
rors and facilitates debugging. Furthermore, modular applications are user-friendly and more
comfortable for porting to new architectures.

4/23

Fully-portable implementation models

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint in the context
of the exascale challenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. The legacy soǕtware was not designed for providing portability simply
because it was not necessary. Hence, they involve a large number of functions and data struc-
tures that only fit properly into the CPU-only approach.

¿Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. Making an effort to design modular applications composed of a reduced
number of independent and well-defined code blocks helps to reduce the generation of er-
rors and facilitates debugging. Furthermore, modular applications are user-friendly and more
comfortable for porting to new architectures.

4/23

Fully-portable implementation models

Is it necessary to use the new hardware architectures?

• In our opinion, yes. New hardware is designed to overcome the power constraint in the context
of the exascale challenge.

Do the traditional implementation models facilitate code portability?

• In our opinion, no. The legacy soǕtware was not designed for providing portability simply
because it was not necessary. Hence, they involve a large number of functions and data struc-
tures that only fit properly into the CPU-only approach.

Do we need to change the way we look at scientific computing in general?

• In our opinion, yes. Making an effort to design modular applications composed of a reduced
number of independent and well-defined code blocks helps to reduce the generation of er-
rors and facilitates debugging. Furthermore, modular applications are user-friendly and more
comfortable for porting to new architectures.

4/23

Fully-portable implementation models

Algebra-based implementations only rely on a reduced number of universal algebraic kernels and data

structures, allowing the use of standard optimised libraries and, therefore, providing portability. As a

counterpart, the formulation of the numerical method becomes more complex and could even lead to an

increase in the number of operations.

Stencil-based

Algebra-based

Traditionally, the stencil-based implementations are used by the scientific computing community. These

implementations arise straightforward from the formulation of the numerical method. However, they re-

quire specific stencil sweeps and data structures for each numerical method.

5/23

The HPC2 fully-portable, algebra-based framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based framework with
many potential applications in the fields of computational physics and mathematics. Its algebraic
approach combined with a multilevel MPI + OpenMP + OpenCL + CUDA parallelisation naturally pro-
vides modularity and portability.

Data and Kernel

Factory

Data and Kernel

Factory
The Data and Kernel Factory

layer holds the data containers

and the computing kernels.

 SpMV(A, u, y)
axpy(u, v, y)

ddot(u, v)

Its layout, inspired in the

abstract factory design

pattern, employs virtual

objects for minimising the

dependencies. Thus, it allows

adding a new implementation

of data containers and compu-

ting kernels easily.

6/23

The HPC2 fully-portable, algebra-based framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based framework with
many potential applications in the fields of computational physics and mathematics. Its algebraic
approach combined with a multilevel MPI + OpenMP + OpenCL + CUDA parallelisation naturally pro-
vides modularity and portability.

Algebra

Algebra

The Algebra layer contains

classes and objects that mimic

algebraic structures. They

wrap data containers and com-

puting kernels from the

abstract factories, which

makes them entirely indepen-

dent of the implementation.

 Set

 VectorSpace

 DifferentialManifold

Differential operators (i.e.

DIV, GRAD) can be generated

by means of whatever numeri-

cal method such as FEM,

FVM. They’re just matrices.

Data and Kernel

Factory

6/23

The HPC2 fully-portable, algebra-based framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based framework with
many potential applications in the fields of computational physics and mathematics. Its algebraic
approach combined with a multilevel MPI + OpenMP + OpenCL + CUDA parallelisation naturally pro-
vides modularity and portability.

M
odels and Solvers

Models and Solvers

The Models and Solvers layer

engages the algebraic objects

for generating both physical

models and solver methods.

 NavierStokes

 RungeKutta

 ConjugateGradient

Recall that the numerical

method (i.e. FEM, FVM,

FDM) is used only at the

preprocessing stage for buil-

ding the matrices.

Algebra

Data and Kernel

Factory

6/23

The HPC2 fully-portable, algebra-based framework

The HPC2 (Heterogeneous Portable Code for HPC) is a fully-portable, algebra-based framework with
many potential applications in the fields of computational physics and mathematics. Its algebraic
approach combined with a multilevel MPI + OpenMP + OpenCL + CUDA parallelisation naturally pro-
vides modularity and portability.

Applications
Applications

The Application layer is where

the user can combine models

and solvers to set-up the case

for running a simulation.

 DrivenCavity

 RisingBubble

 FallingFilm

In summary, everything that

can be expressed by means of

algebraic structures such as

Matrix and Vector, it can be

run within this framework.

M
odels and Solvers

Algebra

Data and Kernel

Factory

6/23

A performance overview of the HPC2

Study case 1
Single-device performance of the SpMV kernel vs the matrix size on an Intel Xeon E5649 (leǕt)
and Nvidia M2090 (right) for a matrix derived from a symmetry-preserving discretisation1 on an
unstructured hex-dominant mesh.

1F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258,
246-267, 2014.

7/23

A performance overview of the HPC2

Study case 1
Single-device performance of the SpMV kernel vs the matrix size on an Intel Xeon E5649 (leǕt)
and Nvidia M2090 (right) for a matrix derived from a symmetry-preserving discretisation1 on an
unstructured hex-dominant mesh.

50 100 200 400 800 1600

0

2

4

6

8

S
p
ee

d
u
p

Matrix size (thousands of rows)

Memory bandwidth

ratio CPU vs GPU
CPU vs GPU

In memory-bounded applications,

the performance depends on the

memory bandwidth. However, the

GPU relative performance impro-

ves with the size of the matrix, in

contrast with that of the CPU.

Hence, the speedup depends on

both the matrix size and the

memory bandwidth.

1F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258,
246-267, 2014.

7/23

A performance overview of the HPC2

Study case 2
Single-device performance comparison of the algebraic DNS algorithm using the
symmetry-preserving discretisation2 on an unstructured hex-dominant mesh of 1M cells.

Intel Xeon

E5-2660

51 GB/s

140 GF/s

Intel Xeon

8160

120 GB/s

1,6 TF/s

Intel Xeon

Phi 7290

400 GB/s

3,4 GF/s

NVIDIA

2090

178 GB/s

0,67 GF/s

NVIDIA

K40

288 GB/s

1,5 TF/s

AMD

Radeon R9 Nano

512 GB/s

0,5 GF/s

GFLOP/s

0

5

10

15

20

25

30

35

40

45

Hardware Architectures

In line with the conclusion in

the Study case 1, the performan-

ce comparison for fixed mesh

sizes is not fair enough; we do

not observe a linear growth

respect to the memory bandwid-

th because the relative perfor-

mance of each hardware archi-

tecture depends on the mesh

size.

To hit the optimal heterogeneous

performance, it is necessary to

assign to each device the domain

partition that maximises its

performance.

DNS algorithm

SpMV

axpy

ddot

2F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258,
246-267, 2014.

8/23

A performance overview of the HPC2

Study case 3
Heterogeneous performance study of the SpMV kernel on a hybrid node equipped with an Intel
E5 2697v3 and an Nvidia Tesla K40 for a matrix derived from a symmetry-preserving
discretisation3 on an unstructured hex-dominant mesh of 10M cells. On the leǕt, the sinlge-node
performance study. On the right, the strong-scaling study.

0

100

200

300

400

500

5 10 15 20 25 30

G
F

L
O

P
/s

Number of Nodes

10M Heterogeneous

10M GPU, overlap

10M GPU, synchronous

 0

 5

 10

 15

 20

 25

 30

E5 2697v3 Tesla K40 Heterogeneous

G
F

L
O

P
/s

3F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258,
246-267, 2014.

9/23

Implementation of a flux limiter
into the HPC2

Algebraic formulation of a flux limiter

Flux limiters are non-linear functions commonly used for solving hyperbolic problems
in the presence of sharp discontinuities or shocks. The typical form of a flux limiter for
finite volume methods reads:

θf = θU +Ψ(r)
(
θD − θU

2

)
(1)

Similarly expressed in the less common form:

θf =
θU + θD

2
+

Ψ(r)− 1
2

(θD − θU) (2)

The operator-based, finite volume discretisation of the equation above is written as
follows:

θs = (Πc→s +Ω(rs)Q(us)∆c→s)θc (3)

10/23

Algebraic formulation of a flux limiter

Flux limiters are non-linear functions commonly used for solving hyperbolic problems
in the presence of sharp discontinuities or shocks. The typical form of a flux limiter for
finite volume methods reads:

θf = θU +Ψ(r)
(
θD − θU

2

)
(1)

Similarly expressed in the less common form:

θf =
θU + θD

2
+

Ψ(r)− 1
2

(θD − θU) (2)

The operator-based, finite volume discretisation of the equation above is written as
follows:

θs = (Πc→s +Ω(rs)Q(us)∆c→s)θc (3)

10/23

Algebraic formulation of a flux limiter

Flux limiters are non-linear functions commonly used for solving hyperbolic problems
in the presence of sharp discontinuities or shocks. The typical form of a flux limiter for
finite volume methods reads:

θf = θU +Ψ(r)
(
θD − θU

2

)
(1)

Similarly expressed in the less common form:

θf =
θU + θD

2
+

Ψ(r)− 1
2

(θD − θU) (2)

The operator-based, finite volume discretisation of the equation above is written as
follows:

θs = (Πc→s +Ω(rs)Q(us)∆c→s)θc (3)

10/23

Detail of the algebraic implementation

Equivalent terms between the analytical and the operator-based, discrete form.

θf =
θU + θD

2
+
Ψ(r)− 1

2
(θD − θU)

θs =Πc→sθc +Ω(rs) Q(us)∆c→sθc

Definition
Πc→s is the the cell-to-face scalar interpolator4 .

4F.X. Trias et al., Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids, J.Comp.Phys., 258,
246-267, 2014.

11/23

Detail of the algebraic implementation

Equivalent terms between the analytical and the operator-based, discrete form.

θf =
θU + θD

2
+
Ψ(r)− 1

2
(θD − θU)

θs =Πc→sθc +Ω(rs) Q(us)∆c→sθc

Definition
rs is the the discontinuity sensor, chosen here as the gradient ratio.

The gradient ratio, rs , is given by5 :

rs(θc) =
(Q(us)UUDc→s + OUDc→s)θc

(Q(us)∆c→s)θc
(4)

5N. Valle et al., Algebraic implementa- tion of a flux limiter for heterogeneous computing, Tenth International Conference on
Computational Fluid Dynamics, Barcelona, 2018.

12/23

Detail of the algebraic implementation

Equivalent terms between the analytical and the operator-based, discrete form.

θf =
θU + θD

2
+
Ψ(r)− 1

2
(θD − θU)

θs =Πc→sθc +Ω(rs) Q(us)∆c→sθc

Definition
Ω(rs) represents the flux limiter term.

The diagonal of Ω(rs), considering a SUPERBEE flux limiter6 , is obtained as:

diag(Ω(rs)) =
max(0,max(min(1, 2rs),min(rs, 2)))− 1

2
(5)

6P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM Journal on Numerical Analysis, 21(5),
995-1011, 1984.

13/23

Detail of the algebraic implementation

Equivalent terms between the analytical and the operator-based, discrete form.

θf =
θU + θD

2
+
Ψ(r)− 1

2
(θD − θU)

θs =Πc→sθc +Ω(rs) Q(us)∆c→sθc

Definition
∆c→s is the scalar cell-to-face difference operator.

Definition
Q(us) holds the sign of the velocity relative to the normal of the face us .

The elements in the diagonal of Q(us) are computed as follows:

diag(Q(us)) = sign(us) (6)

14/23

Definition of the required new kernels

Six new kernels are required for the implementation of the flux limiter. They are simple
element-wise operations over the vectors (like axpy) hence they are not involved in
distributed-memory communications. Besides, they provide a uniform aligned mem-
ory access with coalescing of memory transactions which suit the stream processing
paradigm perfectly. Its arithmetic intensity is very low (i.e. the number of FLOP per
byte); thus they are memory-bounded kernels too. Therefore, having already efficient
MPI + OpenMP + OpenCL + CUDA implementations of axpy, implementing the six new
kernels below is straightforward.

y = axdy(y, x, a) −→ yi = ayi/xi,
y = shft(y, a) −→ yi = yi − a,
y = scal(y, a) −→ yi = ayi,
y = vmax, vmin(y, x) −→ yi = max,min(yi, xi),
y = smax, smin(y, a) −→ yi = max,min(yi, a),
y = sign(x) −→ yi = {−1 if xi < 0, 1 otherwise}.

15/23

Numerical results

Time-integration algorithm for the advection of a scalar field

We consider the simulation of the advection of a scalar field with sharp discontinuities
for different shapes, velocity fields and mesh sizes, using the algebraic implementation
of the flux limiter.

The complete algorithm for the time-integration of the advection equation using the
algebraic formulation of the SUPERBEE flux limiter and a 1st order Euler method is
described below.

Algorithm 1 Time-integration step

1. Compute the matrix Q(us) as diag(Q(us)) = sign(us).
2. Compute the vector rs(θc) = ((Q(us)UUDc→s + OUDc→s) θc) / ((Q(us)∆c→s) θc).
3. Compute the matrix Ω(rs) as diag(Ω(rs)) = (max(0,max(min(1, 2rs),min(rs, 2))) − 1) /2.

4. Integrate θn+1
c = θn

c − dt · DIVs→cUs (Πc→s + Ω(rs)Q(us)∆c→s) θc

16/23

Analysis of kernel calls

We consider the simulation of the advection of a scalar field with sharp discontinuities
for different shapes, velocity fields and mesh sizes, using the algebraic implementation
of the flux limiter.

The table below shows the number of times that each algebraic kernel is called in every
time-step of our simulation.

Step of Algorithm SpMV axpy axdy shft scal vmax,
vmin

smax,
smin

sign

1 – Compute Q(us) 0 0 0 0 0 0 0 1
2 – Compute rs 5 1 1 0 0 0 0 0
3 – Compute Ω(rs) 0 0 0 1 2 1 3 0
4 – 1st order Euler 6 2 0 0 0 0 0 0
Total 11 3 1 1 2 2 2 1

17/23

Analysis of kernel calls

We consider the simulation of the advection of a scalar field with sharp discontinuities
for different shapes, velocity fields and mesh sizes, using the algebraic implementation
of the flux limiter.

The simulations aǕter have been run in both CPU and GPU. The comparison of the rel-
ative time spent in each operation in both CPU and GPU is shown in the figure below
(for simplicity, the vector kernels have been grouped). The others group refers to opera-
tions that are not directly involved with the algorithm such as the printing of simulation
outputs.

matrix-vector kernels

vector kernels

others

70.5%

4.1%

25.4%

69.3%

12.3%

18.4%

CPU, Intel i5-2300 GPU, Nvidia GTX 590

18/23

Pure advection simulation

Study case 4
Simulation of the advection of a 2D rhodonea with a flat velocity field for an
unstructured mesh of 1K cells (leǕt), a structured mesh of 32x32 (center) and a
structured mesh of 128x128 cells (right).

19/23

Pure advection simulation

Study case 5
Simulation of the advection of a 2D rhodonea with a rotating velocity field for an
unstructured mesh of 1K cells (leǕt), a structured mesh of 32x32 (center) and a
structured mesh of 128x128 cells (right).

20/23

Pure advection simulation

A preliminary study of the error of both the flat and the rotating simulations is shown
in the figure below for the structured mesh of 32x32, 128x128 and 512x512 cells.

The error has been computed as the norm of the difference between the final and initial
values of the marker function, normalised with the norm of the initial value as follows:

ϵ =

∣∣∣∣θf − θi
∣∣∣∣

||θi||
(7)

0.09

0.12

0.15

0.18

0.21

0.24

32 128 512

e

Dx

Flat

Rotating

21/23

Level-set simulation

Study case 6
Simulation of the advection of a 2D circle using the level-set method with a vortical
velocity field for a structured mesh of 32x32 cells (leǕt), a structured mesh of 128x128
(center) and a structured mesh of 512x512 cells (right).

A third-order Runge-Kutta time-integration scheme is used for the reinitialisation of
the interface for three pseudo time-steps.

NOTE: Our algebraic implementation of the level-set method is recent and still under
analysis. We will extend the details of the implementation and the results soon.

22/23

Conclusions and future work

Conclusions and future work

In this work...

• An algebraic formulation of a high-resolution scheme has been presented.
• A flux limiter has been implemented into the HPC2 framework.
• We have shown that the addition of only six simple algebraic kernels is sufficient
to implement high-resolution, non-linear schemes into our framework.

• The simulation of the advection of different 2D marker functions in both CPU and
GPU has been shown, including the preliminary results with the level-set method.

• We have shown that the algebra-based approach naturally provides with modu-
larity and portability.

In future, we aim at...

• Optimising the in-house algebraic kernels for specific architectures.
• Extending the implementation to new hybrid architectures.
• Improving the parallel and the heterogeneous efficiency.
• Addapting more challenging numerical methods to the algebra-based framework.
• Coupling optimal multilevel meshing and partitioning tools.
• Enhancing the user interface.

23/23

	Motivation
	Implementation of a flux limiter into the HPC2
	Numerical results
	Conclusions and future work

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:
	anm6:
	anm7:
	anm8:

