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Abstract. In this work, we plan to shed light on the following research question: can
we find a nonlinear tensorial subgrid-scale (SGS) heat flux model with good physical and
numerical properties, such that we can obtain satisfactory predictions for buoyancy driven
turbulent flows? This is motivated by our recent findings showing that the classical (linear)
eddy-diffusivity assumption, qeddy ∝ ∇T , fails to provide a reasonable approximation for
the SGS heat flux, q = uT − uT . This has been shown in our recent work [Dabbagh et
al., Phys. Fluids 29, 105103 (2017)] where SGS features have been studied a priori for a
Rayleigh-Bénard convection (RBC). We have also concluded that nonlinear (or tensorial)
models can give good approximations of the actual SGS heat flux. The nonlinear Leonard
model, qnl ∝ ∇u∇T , is an example thereof. However, this model is unstable and therefore
it cannot be used as standalone SGS heat flux model. Apart from being numerically stable
we also want to have the proper cubic near-wall behavior. Corrections in this regard will
be presented together with a priori/posteriori studies of nonlinear SGS heat flux models
for RBC. Results from LES simulations will be compared with the DNS results obtained
in the on-going PRACE project “Exploring new frontiers in Rayleigh-Bénard convection”.

1 INTRODUCTION

Turbulent flows driven by thermal buoyancy are present in many technological appli-
cations, such as governing flows in nuclear reactors, solar thermal power plants, indoor
space heating and cooling, electronic devices, and convection in the atmosphere, oceans
and deep mantle. Most of these flows are ruled by turbulent regime purely sustained by
buoyancy, the reason that imparts a significant complexity into the flow system. Mainly,
the chief dynamics therein such as the vortical structures and thermal plumes are es-
sentially associated with immanent unsteadiness, energy nonequilibriums, strong pres-
sure fluctuations and hardly interacted different size scales of motions [1]. Following the
self-sustained cycle of the plumes, they produce alternative nonequilibriums between the
buoyant production and the viscous dissipation, which are mainly compensated by the
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pressure transport mechanisms [2]. As a consequence, predicting the complex coherent
dynamics in a turbulent buoyancy-driven flow derives formidable challenges, particularly
within the scope of turbulence modeling.

Direct numerical simulations (DNS) have provided a fruitful knowledge about the prob-
lem in the fields of coherent dynamics and turbulence physics [3, 4]. Apart from over-
coming the uncertainties pertaining to the experimental studies, DNS has allowed to
investigate and resolve many queries in Rayleigh-Bénard convection (RBC) at relatively
high Rayleigh (Ra) numbers [5, 6]. However, the full resolution of every generated vor-
tical filament in DNS requires increasing computational demands with Ra. Therefore,
in the foreseeable future, the numerical simulations of hard turbulent RBC will have to
resort to turbulence modeling. We therefore turn to large-eddy simulation (LES) to pre-
dict the large-scale behavior of incompressible turbulent flows driven by buoyancy. In
LES, the large scales of motions in a flow are explicitly computed, whereas effects of
small-scale motions are modeled. Since the advent of computational fluid dynamics many
subgrid-scale models have been proposed and successfully applied to a wide range of flows
(see, for instance, the encyclopedic work of Sagaut [7]). The main goal of the current
project is to improve the diffusive (linear) description of turbulent flows that is provided
by eddy-diffusivity models for the subgrid-scale (SGS) heat flux. To that end, we will
consider nonlinear SGS heat flux models that can properly represent the dynamics of the
smallest (unresolved) scales, overcoming the inherent limitations of the eddy-diffusivity
models [8]. Related with this, we also aim to find a proper definition of the subgrid
characteristic length scale for simulations on anisotropic or unstructured grids. This is
particularly important for highly anisotropic grids, on which the smallest grid spacing
may start dominating the usually chosen characteristic length scale.

The specific SGS models that we consider consist of a linear eddy-viscosity term for
momentum supplemented by a nonlinear model for the SGS heat flux. The model terms
are designed to preserve important mathematical and physical properties, such as symme-
tries of the Navier-Stokes equations, and the near-wall scaling and the dissipative nature
of the SGS. The desired properties are already included in existing models for the SGS
stresses. Examples of eddy-viscosity models that exhibit the proper near-wall behavior
are given by the WALE model [9], the σ-model [10] and the S3PQR model proposed in
our previous work [11]. However, the (linear) eddy-diffusivity assumption fails to provide
a reasonable approximation for the SGS heat flux. This has been clearly shown in our
very recent work [8] where the SGS features have been studied a priori for a RBC at
Ra = 1010. We have also conclude that nonlinear (or tensorial) models can give a good
approximation of the actual SGS heat flux. Among them, the models proposed by Daly
and Harlow [12] (for RANS modeling) and Peng and Davidson [13] will be considered
together with the new approach recently proposed on the basis of our a priori studies [8].

The rest of the paper is organized as follows. In the next section, the theoretical
background of LES simulation of buoyancy-driven flows is presented. Then, in Section 3
different nonlinear SGS heat flux models are discussed and analyzed. Finally, conclusions
are given in Section 4.
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Figure 1: Schema of the Rayleigh-Bénard configuration studied in Refs. [4, 8]. Displayed together with
a developed instantaneous temperature field taken of the DNS at Ra = 1010.

2 BACKGROUND

2.1 Large-eddy simulation of buoyancy-driven flows

In large-eddy simulation, a filtering or coarse-graining operation is employed to distin-
guish between large and small scales of motion. This operation is denoted by an overbar
in what follows. The evolution of the incompressible large-scale velocity, u, and tem-
perature, T , fields can be described by the filtered Navier-Stokes and thermal energy
equations, supplemented by the incompressibility constraint,

∂tu+ (u · ∇)u = (Pr/Ra)1/2 ∇2u−∇p+ f −∇ · τ ; ∇ · u = 0, (1)

∂tT + (u · ∇)T = (Ra/Pr)−1/2∇2T −∇ · q, (2)

where u, T and p are respectively the filtered velocity, temperature and pressure. The SGS
stress tensor, τ , and the SGS heat flux vector, q, represents the effect of the unresolved
scales,

τ = u⊗ u− u⊗ u, (3)

q = uT − uT , (4)

and they need to be modeled in order to close the system. The most popular approach
is the eddy-viscosity assumption, where the SGS stress tensor is computed in alignment
with the local rate-of-strain tensor, S = 1/2(∇u+∇ut), i.e.

τ ≈ −2νeS(u). (5)

In analogy to τ , the SGS heat flux is often approximated employing the gradient-diffusion
hypothesis (linear modeling), given by

q ≈ −κt∇T (≡ qeddy). (6)
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Then, the Reynolds analogy assumption is applied to evaluate the eddy-diffusivity, κt:
the heat flux is assumed to be analogous to the momentum flux and its ratio therefore,
is constant. In this case, the eddy-diffusivity, κt, is derived from the eddy-viscosity, νe,
by a constant turbulent Prandtl number, Prt, independent of the instantaneous flow
conditions, i.e. κt = νe/Prt. These assumptions have been shown to be erroneous to
provide accurate predictions of the SGS heat flux in our recent work [8]. Namely, a priori
analysis has shown that the eddy-diffusivity assumption, qeddy (Eq. 6), is completely
misaligned with the actual subgrid heat flux, q (see Figure 2, top left). In conclusion,
one can corroborate the failure of the isotropic eddy-diffusivity parametrization (qeddy) in
turbulent buoyancy driven flows. In contrast, the tensor diffusivity (nonlinear) Leonard
model [14], which is obtained by taking the leading term of the Taylor series expansion
of q,

q ≈
δ2

12
G∇T (≡ qnl), (7)

provides a much more accurate a priori representation of q (see Figure 2, top left). Here,
G represents the gradient of the resolved velocity field, i.e. G ≡ ∇u. Then, the rate-of-
strain, S, and the rate-of-rotation, Ω, tensors are respectively given by the symmetric and
anti-symmetric parts,

S =
1

2
(G+ G

T ) Ω =
1

2
(G− G

T ). (8)

It can be argued that the rotational geometries are prevalent in the bulk region over
the strain slots, i.e. |Ω| > |S| (see Refs [4, 8]). Then, the dominant anti-symmetric
tensor, Ω, rotates the thermal gradient vector, ∇T to be almost perpendicular to qnl (see
Eq.7). Therefore, the eddy-diffusivity paradigm is only applicable in the not-so-frequent
strain-dominated areas. This also matches with the observations of Chumakov [15], who
performed a priori study of the SGS flux of a passive scalar in isotropic homogeneous
turbulence.

2.2 Nonlinear SGS heat flux models for large-eddy simulation

Since the eddy-diffusivity, qeddy, cannot provide an accurate representation of the SGS
heat flux, we turn our attention to nonlinear models. As mentioned above, the Leonard
model [14] given in Eq.(7) can provide a very accurate a priori representation of the SGS
heat flux (see Figure 2, top left). However, the local dissipation (in the L2-norm sense) is
proportional to ∇T ·G∇T = ∇T · S∇T +∇T ·Ω∇T = ∇T · S∇T . Since the velocity field
is divergence-free, λS

1 + λS
2 + λS

3 = 0, and the eigensystem can be ordered λS
1 > λS

2 > λS
3

with λS
1 > 0 (extensive eigendirection) and λS

3 6 0 (compressive eigendirection), and λS
2

is either positive or negative. Hence, the local dissipation introduced by the model can
take on negative values; therefore, the Leonard model cannot be used as a standalone SGS
heat flux model, since it produces a finite-time blow-up. A similar problem is encountered
with the nonlinear tensorial model proposed by Peng and Davidson [13],

q ≈ Ctδ
2
S∇T (≡ qPD). (9)
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Figure 2: Joint probability distribution functions (PDF) of the angles (α, β) defined in the top right
figure and plotted on a half unit sphere to show the orientation trends in the space of the mixed model.
The PDF of γ is shown along the bottom strip of each chart. Alignment trends of the actual SGS heat
flux, q (top, left), the Daly and Harlow [12] model (see qDH in Eq. 11) (bottom, left) and the Peng and
Davidson model [13] (see qPD in Eq. 9) (bottom, right). For comparative and simplicity reasons, the
JPDF and the PDF magnitudes are normalized by its maximal. For further details the reader is referred
to our recent paper [8].

.

An attempt to overcome these instability issues is the so-called mixed model [16], where
the Leonard model (Eq. 7) is linearly combined with an eddy-diffusivity model (Eq. 6),

q ≈
δ2

12
(G∇T − Λ|S|∇T ) (≡ qmix), (10)

where Λ is the ratio of the corresponding model coefficients. Another interesting nonlinear
model was proposed by Daly and Harlow [12] for modeling the SGS heat flux for RANS,

q ≈ −TSGSτ∇T = −
1

|S|

δ2

12
GG

T∇T (≡ qDH), (11)

where TSGS = 1/|S| is an appropriate SGS timescale [15] and the SGS stress tensor, τ , is
approximated with the gradient model [17], i.e. τ ≈ (δ2/12)GGT . Notice that the model
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Figure 3: Energy spectra for decaying isotropic turbulence corresponding to the experiment of Comte-
Bellot and Corrsin [18]. Results obtained with the new definition δlsq proposed in Eq.(12) are compared
with the classical definition proposed by Deardorff given in Eq.(14). For clarity, latter results are shifted
one decade down. For details the reader is referred to our recent paper [19].

proposed by Peng and Davidson (Eq. 9) can be viewed in the same framework if the SGS
stress tensor is estimated by an eddy-viscosity model, i.e. τ ≈ −2νeS and TSGS ∝ δ2/νe.
These two models have shown a much better a priori alignment with the actual SGS heat
flux (see Figure 2, bottom).

2.3 Choice of the characteristic length scale

As is clear from the definition of all the model coefficients, we need a specification
of the subgrid characteristic length scale, δ. The subgrid characteristic length is usually
associated with the local grid size. That is, for isotropic grids, δ is taken equal to the mesh
size, δ = ∆x = ∆y = ∆z. However, for anisotropic or unstructured grids, a consensus
has not been reached yet. In this context, and with the aim to overcome the limitation
of the Deardorff definition [20] (cube root of the cell volume), the following definition for
δ was proposed and studied in a recent paper [19],

δlsq =

√

GδG
T
δ : GGT

GGT : GGT
, (12)

where G ≡ ∇u, Gδ ≡ G∆ and ∆ ≡ diag(∆x,∆y,∆z) (for a Cartesian grid). This
definition of δ fulfills a set of desirable properties. Namely, it is locally defined and well
bounded, ∆x ≤ δlsq ≤ ∆z (assuming that ∆x ≤ ∆y ≤ ∆z). Moreover, it is sensitive to
flow orientation and applicable to unstructured meshes (by simply replacing the tensor
∆ by the Jacobian of the mapping from the physical to the computational space). This
definition (12) is obtained minimizing (in a least-squares sense) the difference between
the leading terms of the Taylor series of the SGS tensor, τ(u), for an isotropic and an
anisotropic filters lengths; namely,

τ(u) =
δ2

12
GG

T +O(δ4) ; τ(u) =
1

12
GδG

T
δ +O(δ4), (13)
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Results displayed in Figure 3 correspond to the classical experimental results obtained by
Comte-Bellot and Corrsin [18]. LES results have been obtained using the Smagorinsky
model, for a set of (artificially) stretched meshes. In contrast with the results obtained
using the Deardorff definition [20],

δvol = (∆x∆y∆z)1/3, (14)

the proposed definition of the subgrid characteristic length, δlsq, significantly minimizes
the effect of mesh anisotropies on the performance of SGS stress tensor models. For
further details the reader is referred to our recent paper [19].

3 BUILDING A PROPER SGS HEAT FLUX MODEL

3.1 Exploring nonlinear SGS heat flux models

In this work we focus on finding a nonlinear SGS heat flux model with good physical
and mathematical properties, that provides both accurate a priori representation of the
actual SGS heat flux, q, and satisfactory a posteriori predictions for turbulent buoyancy
driven flows.

Let us remark that the focus of this study is not on the eddy-viscosity part of the
model (see Eq. 5), but on the nonlinear approximation of the SGS heat flux, q (see
Eq. 4). We do, however, have to make a specific choice for the SGS stress tensor model.
We can, for instance, take one of the previously mentioned models: the WALE model [9],
the σ-model [10] or the S3PQR models [11] (with the same near-wall scaling as the true
turbulent stresses). Aiming to include several of the desirable properties according to
which these models have been designed, we suggest to take the S3QR model proposed in
our work [11],

νS3QR
e = (Cs3qrδ)

2Q−1
GGTR

5/6

GGT , (15)

where QGGT and RGGT , are the second and the third invariants of the GGT tensor, respec-
tively. This model exhibits the same near-wall scaling behavior as the turbulent stresses
and it vanishes in all two-component flows, as well as in states of pure shear and pure
rotation. Moreover, from a numerical point-of-view, it is solely based on the local flow
topology contained in the tensor of the resolved velocity field, G, it is well-conditioned
and it always provides non-negative values for νe ≥ 0.

As mentioned before, (linear) eddy-diffusivity (see Eq. 6) assumption cannot provide
an accurate representation of the SGS heat flux, q; hence, we turn our attention to
nonlinear models. The least to be expected from a SGS model is to keep the stability of
the numerical solution. This is the case of the model proposed by Daly and Harlow [12]
(see Eq. 11): the tensor GGT is positive semi-definite. Moreover, this model has shown a
rather good a priori alignment with the actual SGS heat flux (see Figure 2, bottom left).
Apart from this, we also want to explore nonlinear models based on the tensor, GθG

T
θ ,

proposed in our recent work [8]. This tensor is also positive semi-definite and a priori
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studies of the SGS heat flux model given by

q ≈ −
1

2

1

|S|

GθG
T
θ

|∇T |2
∇T, (16)

have displayed rather good alignment trends too. Furthermore, like the above-mentioned
S3PQR models for the SGS stress tensor, τ , we also want that the SGS heat flux model
have the proper cubic near-wall behavior. This is not the case of any of these two potential
candidates. Corrections in this regard will be also explored.

4 CONCLUDING REMARKS AND FUTURE RESEARCH

Motivated by our recent findings showing that the classical (linear) eddy-diffusivity
assumption, qeddy ∝ ∇T , fails to provide a reasonable approximation for the SGS heat
flux, q = uT − uT (see Figure 2), in this work we plan to shed light on the follow-
ing research question: can we find a nonlinear SGS heat flux model with good physical
and numerical properties, such that we can obtain satisfactory predictions for a turbu-
lent Rayleigh-Bénard convection? We aim to answer this question by first studying the
capability of the eddy-viscosity assumption (see Eq. 5) to model the SGS stress tensor,
τ , without any modelization of the SGS heat flux. To do so, we will carry out LES
simulations for very low Pr numbers. In this case, the ratio between the Kolmogorov
length scale and the Obukhov-Corrsin length scale is given by Pr1/2 [7]; therefore, for
a Pr = 0.005 (liquid sodium) we have a separation of more than one decade. Hence,
it is possible to combine a LES simulation for the velocity field, u, with the numerical
resolution of all the relevant scales of the thermal field, T . Furthermore, we will study the
performance of the above-mentioned nonlinear SGS heat flux models. Results from LES
simulations will be compared with those obtained from DNS. In this regard, it is expected
to play an important role the results obtained from the on-going PRACE supercomputing
project “Exploring new frontiers in Rayleigh-Bénard convection” awarded with 33.1Mh in
last PRACE 15th call. Results will be presented during the conference.
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[3] F. Chillà and J. Schumacher. New perspectives in turbulent Rayleigh-Bénard con-
vection. The European Physics Journal E, 35:58, 2012.

[4] F. Dabbagh, F. X. Trias, A. Gorobets, and A. Oliva. On the evolution of flow topology
in turbulent Rayleigh-Bénard convection. Physics of Fluids, 28:115105, 2016.

[5] R.J.A.M. Stevens, D. Lohse, and R. Verzicco. Prandtl and Rayleigh number depen-
dence of heat transport in high Rayleigh number thermal convection. Journal of
Fluid Mechanics, 688:31–43, 2011.

[6] E. P. van der Poel, R. Verzicco, S. Grossmann, and D. Lohse. Plume emission
statistics in turbulent Rayleigh- Bénard convection. Journal of Fluid Mechanics,
772:5–15, 2015.

[7] P. Sagaut. Large Eddy Simulation for Incompressible Flows: An Introduction.
Springer, third edition, 2005.

[8] F. Dabbagh, F. X. Trias, A. Gorobets, and A. Oliva. A priori study of subgrid-scale
features in turbulent Rayleigh-Bénard convection. Physics of Fluids, 29:105103, 2017.

[9] F. Nicoud and F. Ducros. Subgrid-scale stress modelling based on the square of the
velocity gradient tensor. Flow, Turbulence and Combustion, 62(3):183–200, 1999.

[10] F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee. Using singular values to build
a subgrid-scale model for large eddy simulations. Physics of Fluids, 23(8):085106,
2011.

[11] F. X. Trias, D. Folch, A. Gorobets, and A. Oliva. Building proper invariants for
eddy-viscosity subgrid-scale models. Physics of Fluids, 27(6):065103, 2015.

[12] B. J. Daly and F. H. Harlow. Transport equations in turbulence. Physics of Fluids,
13:2634, 1970.

[13] S. Peng and L. Davidson. On a subgrid-scale heat flux model for large eddy simulation
of turbulent thermal flow. International Journal of Heat and Mass Transfer, 45:1393–
1405, 2002.

[14] A. Leonard. Large-eddy simulation of chaotic convection and beyond. AIAA paper,
97-0304, 1997.

[15] S. G. Chumakov. ”A priori study of subgrid-scale flux of a passive scalar in isotropic
homogeneous turbulence. Physical Review E, 78:036313, 2008.

[16] C. W. Higgins, M. B. Parlange, and C. Meneveau. The heat flux and the temperature
gradient in the lower atmosphere. Geophysical Research Letter, 31:L22105, 2004.

9



F.X. Trias, F. Dabbagh, A. Gorobets, A. Oliva

[17] R. A. Clark, J. H. Ferziger, and W. C. Reynolds. Evaluation of subgrid-scale models
using an accurately simulated turbulent flow. Journal Fluid Mechanics, 91:1–16,
1979.

[18] G. Comte-Bellot and S. Corrsin. Simple Eulerian time correlation of full- and narrow-
band velocity signals in grid-generated, isotropic turbulence. Journal of Fluid Me-
chanics, 48:273–337, 1971.

[19] F. X. Trias, A. Gorobets, M. H. Silvis, R. W. C. P. Verstappen, and A. Oliva. A new
subgrid characteristic length for turbulence simulations on anisotropic grids. Physics
of Fluids, 26:115109, 2017.

[20] J. W. Deardorff. Numerical study of three-dimensional turbulent channel flow at
large Reynolds numbers. Journal of Fluid Mechanics, 41:453–480, 1970.

10


