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In this work, we plan to shed light on the following re-

search question: can we find a nonlinear subgrid-scale (SGS)

heat flux model with good physical and numerical properties,

such that we can obtain satisfactory predictions for buoyancy

driven turbulent flows? This is motivated by our findings

showing that the classical (linear) eddy-diffusivity assumption

fails to provide a reasonable approximation for the SGS heat

flux. This was shown in our work [1] where SGS features have

been studied a priori for a Rayleigh-Bénard convection. We

have also concluded that nonlinear (or tensorial) models can

give good approximations of the actual SGS heat flux. Briefly,

the large-eddy simulation (LES) equations arise from apply-

ing a spatial commutative filter, with filter length δ, to the

incompressible Navier-Stokes and thermal energy equations,

∂tu+ (u · ∇)u = (Pr/Ra)1/2 ∇2u−∇p+ f −∇ · τ, (1)

∂tT + (u · ∇)T = (Ra/Pr)−1/2∇2T −∇ · q, (2)

where u, T and p are respectively the filtered velocity, tem-

perature and pressure, and the incompressibility constraint

reads ∇ · u = 0. The SGS stress tensor, τ = u⊗ u − u⊗ u,

and the SGS heat flux vector, q = uT − uT , represent the

effect of the unresolved scales, and they need to be modeled

in order to close the system. The most popular approach is

the eddy-viscosity assumption, where the SGS stress tensor

is assumed to be aligned with the local rate-of-strain tensor,

S = 1/2(∇u + ∇ut), i.e. τ ≈ −2νeS(u). By analogy, the

SGS heat flux, q, is usually approximated using the gradient-

diffusion hypothesis (linear modeling), given by

q ≈ −κt∇T (≡ qeddy). (3)

Then, the Reynolds analogy assumption is applied to evalu-

ate the eddy-diffusivity, κt, via a constant turbulent Prandtl

number, Prt, i.e. κt = νe/Prt. These assumptions have been

shown to be erroneous to provide accurate predictions of the

SGS heat flux [1]. Namely, a priori analysis showed that the

eddy-diffusivity assumption, qeddy (Eq. 3), is completely mis-

aligned with the actual subgrid heat flux, q (see Figure 1,

top). In contrast, the tensor diffusivity (nonlinear) Leonard

model [2], which is obtained by taking the leading term of the

Taylor series expansion of q,

q ≈
δ2

12
G∇T (≡ qnl), (4)

provides a much more accurate a priori representation of q

(see Figure 1, top). Here, G ≡ ∇u represents the gradient

of the resolved velocity field. It can be argued that the ro-

tational geometries are prevalent in the bulk region over the

strain slots, i.e. |Ω| > |S| (see Refs [1, 3]). Then, the dom-

inant anti-symmetric tensor, Ω = 1/2(G − GT ), rotates the

thermal gradient vector, ∇T , to be almost perpendicular to

qnl (see Eq.4). Therefore, the eddy-diffusivity paradigm is

only applicable in the not-so-frequent strain-dominated areas.

Since the eddy-diffusivity, qeddy , cannot provide an accu-

rate representation of the SGS heat flux, we turn our atten-

tion to nonlinear models. As mentioned above, the Leonard

model [2] given in Eq.(4) can provide a very accurate a priori

representation of the SGS heat flux (see Figure 1, top left).

However, the local dissipation (in the L2-norm sense) is pro-

portional to ∇T ·G∇T = ∇T ·S∇T +∇T ·Ω∇T = ∇T ·S∇T .

Since the velocity field is divergence-free, λS
1
+λS

2
+λS

3
= 0, the

eigensystem can be ordered λS
1
> λS

2
> λS

3
with λS

1
> 0 (exten-

sive eigendirection) and λS
3
6 0 (compressive eigendirection),

and λS
2

is either positive or negative. Hence, the local dis-

sipation introduced by the model can take negative values;

therefore, the Leonard model cannot be used as a standalone

SGS heat flux model, since it produces a finite-time blow-up.

A similar problem is encountered with the nonlinear tensorial

model qPD proposed by Peng and Davidson [5],

q ≈ Ctδ
2
S∇T (≡ qPD), (5)

q ≈ −TSGSτ∇T = −
1

|S|

δ2

12
GG

T∇T (≡ qDH), (6)

whereas the nonlinear model qDH proposed by Daly and Har-

low [4] relies on the positive semi-definite tensor GGT . Here,

TSGS = 1/|S| is the SGS timescale. Notice that the model pro-

posed by Peng and Davidson, qPD, can be viewed in the same

framework if the SGS stress tensor is estimated by an eddy-

viscosity model, i.e. τ ≈ −2νeS and TSGS ∝ δ2/νe. These two

models have shown a much better a priori alignment with the

actual SGS heat flux, especially the DH model (see Figure 1,

middle). Moreover, the DH is numerically stable since the

tensor GGT is positive semi-definite. Hence, it seems appro-

priate to build models based on this tensor. However, the DH

model does not have the proper near-wall behaviour, i.e. q ∝

〈v′T ′〉 = O(y3) where y is the distance to the wall. An analy-

sis of the DH model leads to GGT∇T ∝ O(y1). Therefore, the
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Figure 1: Joint probability distribution functions (PDF) of the

angles (α, β) plotted on a half unit sphere to show the orientation

in the space of the mixed model. From top to bottom, alignment

trends of the actual SGS heat flux, q, the Daly and Harlow [4]

model (Eq. 6) and the Peng and Davidson model [5] (Eq. 5). For

simplicity, the JPDF and the PDF magnitudes are normalized by

its maximal. For details the reader is referred to [1].

near-wall cubic behaviour is recovered if TSGS ∝ O(y2). This

is not the case of the timescale used in the Daly and Harlow [4]

model, i.e. TSGS = 1/|S| = O(y0).

At this point it is interesting to observe that new timescales

can be derived by imposing restrictions on the differential op-

erators they are based on. For instance, let us consider models

that are based on the invariants of the tensor GGT

q ≈ −CM

(

P p

GGT
Qq

GGT
Rr

GGT

) δ2

12
GG

T∇T (≡ qS2) (7)

where P
GGT , Q

GGT and R
GGT are the first, second and third

invariant of the GGT tensor. This tensor is proportional

to the gradient model [6] given by the leading term of the

Taylor series expansion of the subgrid stress tensor τ(u) =

(δ2/12)GGT +O(δ4). Then, the exponents p, q and r in Eq.(7),

must satisfy the following equations

−6r − 4q − 2p = 1; 6r + 2q = s, (8)

to guarantee that the differential operator has units of time,
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Figure 2: Solutions of the linear system of Eq.(8) for s = 0 (red

lines) and s = 2 (blue lines). Each (r, p, q) represents an tensor-

diffusivity model with the form of Eq.(7).

i.e. [P p

GGT
Qq

GGT
Rr

GGT
] = [T 1] and a slope s for the asymptotic

near-wall behavior, i.e. O(ys). Solutions for q(p, s) = −(1 +

s)/2−p and r(p, s) = (2s+1)/6+p/3 are displayed in Figure 2.

It we restrict ourselves to solutions with the proper near-wall

scaling, i.e. s = 2 (blue lines in Figure 2), a family of p-

dependent models follows. Restricting ourselves to solutions

involving only two invariants of GGT three models are found.

Namely,

qS2PQ = −Cs2pqP
−5/2

GGT
Q

GGT

δ2

12
GG

T∇T, (9)

qS2PR = −Cs2prP
−3/2

GGT
R

1/3

GGT

δ2

12
GG

T∇T , (10)

qS2QR = −Cs2qrQ
3/2

GGT
R

5/6

GGT

δ2

12
GG

T∇T , (11)

for p = −5/2, p = −1.5 and p = 0, respectively. These three

solutions are represented in Figure 2. Apart from being un-

conditionally stable, these models display very good a priori

alignment trends in the bulk (similar to the PD model; see

Figure 1, middle) but also in the near-wall region. Hence, we

consider that they are very good candidates for a posteriori

LES simulations of buoyancy-driven flows. Results from LES

simulations will be compared with the DNS data obtained

in the PRACE project “Exploring new frontiers in Rayleigh-

Bénard convection”.
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